View Single Post
  #116  
Old Tuesday, June 09, 2009
AFRMS AFRMS is offline
37th Common
Medal of Appreciation: Awarded to appreciate member's contribution on forum. (Academic and professional achievements do not make you eligible for this medal) - Issue reason: CSP Medal: Awarded to those Members of the forum who are serving CSP Officers - Issue reason: Diligent Service Medal: Awarded upon completion of 5 years of dedicated services and contribution to the community. - Issue reason:
 
Join Date: Mar 2006
Posts: 1,514
Thanks: 1,053
Thanked 1,681 Times in 873 Posts
AFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud of
Default Cell Biology Mitochondria Part I

Mitochondria
In cell biology, a mitochondrion (plural mitochondria) is a membrane-enclosed organelle found in most eukaryotic cells. These organelles range from 0.5–10 micrometers (μm) in diameter. Mitochondria are sometimes described as "cellular power plants" because they generate most of the cell's supply of adenosine triphosphate(ATP), used as a source of chemical energy In addition to supplying cellular energy, mitochondria are involved in a range of other processes, such as signaling, cellular differentiation, cell death, as well as the control of the cell cycle and cell growth Mitochondria have been implicated in several human diseases, including mitochondrial disorders and cardiac dysfunction,and may play a role in the aging process.
Several characteristics make mitochondria unique. The number of mitochondria in a cell varies widely by organism and tissue type. Many cells have only a single mitochondrion, whereas others can contain several thousand mitochondria.The organelle is composed of compartments that carry out specialized functions. These compartments or regions include the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix. Mitochondrial proteins vary depending on the tissues and species. In human, 615 distinct types of proteins were identified from cardiac mitochondria, whereas in murinae (rats), 940 proteins encoded by distinct genes were reported.The mitochondrial proteome is thought to be dynamically regulated. Although most of a cell's DNA is contained in the cell nucleus, the mitochondrion has its own independent genome. Further, its DNA shows substantial similarity to bacterial genomes.





Structure


A mitochondrion contains outer and inner membranes composed of phospholipid bilayers and proteins. The two membranes, however, have different properties. Because of this double-membraned organization, there are five distinct compartments within the mitochondrion. There is the outer mitochondrial membrane, the intermembrane space (the space between the outer and inner membranes), the inner mitochondrial membrane, the cristae space (formed by infoldings of the inner membrane), and the matrix(space within the inner membrane).


Outer mitochondrial membrane


The outer mitochondrial membrane, which encloses the entire organelle, has a protein-to-phospholipid ratio similar to that of the eukaryotic plasma membrane (about 1:1 by weight). It contains large numbers of integral proteins called porins.. These porins form channels that allow molecules 5000 Daltons or less in molecular weight to freely diffuse from one side of the membrane to the other. Larger proteins can also enter the mitochondrion if a signaling sequence at their N-terminusbinds to a large multisubunit protein called translocase of the outer membrane, which then actively moves them across the membrane.Disruption of the outer membrane permits proteins in the intermembrane space to leak into the cytosol, leading to certain cell death.

Intermembrane space

The intermembrane space is basically the space between the outer membrane and the inner membrane. Because the outer membrane is freely permeable to small molecules, the concentrations of small molecules such as ions and sugars in the intermembrane space is the same as the cytosol.However, as large proteins must have a specific signaling sequence to be transported across the outer membrane, the protein composition of this space is different than the protein composition of the cytosol. One protein that is localized to the intermembrane space in this way is cytochrome c.

Inner mitochondrial membrane

The inner mitochondrial membrane contains proteins with four types of functions:
  1. Those that perform the redox reactions of oxidative phosphorylation
  2. ATP synthase, which generates ATP in the matrix
  3. Specific transport proteins that regulate metabolite passage into and out of the matrix
  4. Protein import machinery.
Unlike the outer membrane, the inner membrane does not contain porins and is highly impermeable to all molecules..In addition, there is a membrane potential across the inner membrane formed by the action of the enzymes of the electron transport chain.


Cristae


The inner mitochondrial membrane is compartmentalized into numerous cristae, which expand the surface area of the inner mitochondrial membrane, enhancing its ability to produce ATP. These are not simple random folds but rather invaginations of the inner membrane, which can affect overall chemiosmotic function.In typical livermitochondria, for example, the surface area, including cristae, is about five times that of the outer membrane. Mitochondria of cells that have greater demand for ATP, such as muscle cells, contain more cristae than typical liver mitochondria.These folds are studded with small round bodies known as F1 particles or oxysomes.



Matrix



The matrix is the space enclosed by the inner membrane. It contains about 2/3 of the total protein in a mitochondrion.The matrix is important in the production of ATP with the aid of the ATP synthase contained in the inner membrane. The matrix contains a highly-concentrated mixture of hundreds of enzymes, special mitochondrial ribosomes, tRNA, and several copies of the mitochondrial DNA genome. Of the enzymes, the major functions include oxidation of pyruvate and fatty acids, and the citric acid cycle.

Mitochondria have their own genetic material, and the machinery to manufacture their own RNAsand proteins. A published human mitochondrial DNA sequence revealed 16,569 base pairs encoding 37 total genes: 22 tRNA, 2 rRNA, and 13 peptide genes.The 13 mitochondrial peptides in humans are integrated into the inner mitochondrial membrane, along with proteins encoded by genes that reside in the host cell's nucleus.




Reply With Quote