View Single Post
  #120  
Old Tuesday, June 16, 2009
AFRMS AFRMS is offline
37th Common
Medal of Appreciation: Awarded to appreciate member's contribution on forum. (Academic and professional achievements do not make you eligible for this medal) - Issue reason: CSP Medal: Awarded to those Members of the forum who are serving CSP Officers - Issue reason: Diligent Service Medal: Awarded upon completion of 5 years of dedicated services and contribution to the community. - Issue reason:
 
Join Date: Mar 2006
Posts: 1,514
Thanks: 1,053
Thanked 1,681 Times in 873 Posts
AFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud ofAFRMS has much to be proud of
Default Cell Biology : DNA Replication

DNA Replication.

The process of making an identical copy of a section of duplex (double-stranded) DNA, using existing DNA as a template for the synthesis of new DNA strands. In humans and other eukaryotes, replication occurs in the cell nucleus.
Before a cell can divide, it must duplicate all its DNA. In eukaryotes, this occurs during S phase of the cell cycle.

The Biochemical Reactions
DNA replication begins with the "unzipping" of the parent molecule as the hydrogen bonds between the base pairs are broken.
Once exposed, the sequence of bases on each of the separated strands serves as a template to guide the insertion of a complementary set of bases on the strand being synthesized.
The new strands are assembled from deoynucleotide triphosphate.
Each incoming nucleotide is covalently linked to the "free" 3' carbon atom on the pentose (figure) as
the second and third phosphates are removed together as a molecule of pyrophosphate(PPi).
The nucleotides are assembled in the order that complements the order of bases on the strand serving as the template.
Thus each C on the template guides the insertion of a G on the new strand, each G a C, and so on.
When the process is complete, two DNA molecules have been formed identical to each other and to the parent molecule.

The Enzymes

A portion of the double helix is unwound by a helicase.
A molecule of a DNA polymerase binds to one strand of the DNA and begins moving along it in the 3' to 5' direction, using it as a template for assembling a leading strand of nucleotides and reforming a double helix. In eukaryotes, this molecule is called DNA polymerase delta (δ).
Because DNA synthesis can only occur 5' to 3', a molecule of a second type of DNA polymerase (epsilon, ε, in eukaryotes) binds to the other template strand as the double helix opens. This molecule must synthesize discontinuous segments of polynucleotides (called Okazaki fragments). Another enzyme, DNA ligase I then stitches these together into the lagging strand.


DNA Replication is Semiconservative
When the replication process is complete, two DNA molecules — identical to each other and identical to the original — have been produced. Each strand of the original molecule has remained intact as it served as the template for the synthesis of a complementary strand.

This mode of replication is described as semi-conservative: one-half of each new molecule of DNA is old; one-half new.
Watson and Crick had suggested that this was the way the DNA would turn out to be replicated. Proof of the model came from the experiments of Meselson and Stahl.


Steps of DNA Replication
1)The first major step for the DNA Replication to take place is the breaking of hydrogen bonds between bases of the two antiparallel strands. The unwounding of the two strands is the starting point. The splitting happens in places of the chains which are rich in A-T. That is because there are only two bonds between Adenine and Thymine (there are three hydrogen bonds between Cytosine and Guanine). Helicase is the enzyme that splits the two strands. The initiation point where the splitting starts is called "origin of replication".The structure that is created is known as "Replication Fork".


2) One of the most important steps of DNA Replication is the binding of RNA Primase in the the initiation point of the 3'-5' parent chain. RNA Primase can attract RNA nucleotides which bind to the DNA nucleotides of the 3'-5' strand due to the hydrogen bonds between the bases. RNA nucleotides are the primers (starters) for the binding of DNA nucleotides.


3) The elongation process is different for the 5'-3' and 3'-5' template. a)5'-3' Template: The 3'-5' proceeding daughter strand -that uses a 5'-3' template- is called leading strand because DNA Polymerase ä can "read" the template and continuously adds nucleotides (complementary to the nucleotides of the template, for example Adenine opposite to Thymine etc).




b)3'-5'Template: The 3'-5' template cannot be "read" by DNA Polymerase ä. The replication of this template is complicated and the new strand is called lagging strand. In the lagging strand the RNA Primase adds more RNA Primers. DNA polymerase å reads the template and lengthens the bursts. The gap between two RNA primers is called "Okazaki Fragments".

The RNA Primers are necessary for DNA Polymerase å to bind Nucleotides to the 3' end of them. The daughter strand is elongated with the binding of more DNA nucleotides.



4) In the lagging strand the DNA Pol I -exonuclease- reads the fragments and removes the RNA Primers. The gaps are closed with the action of DNA Polymerase (adds complementary nucleotides to the gaps) and DNA Ligase (adds phosphate in the remaining gaps of the phosphate - sugar backbone).


Each new double helix is consisted of one old and one new chain. This is what we call semiconservative replication.


5) The last step of DNA Replication is the Termination. This process happens when the DNA Polymerase reaches to an end of the strands. We can easily understand that in the last section of the lagging strand, when the RNA primer is removed, it is not possible for the DNA Polymerase to seal the gap (because there is no primer). So, the end of the parental strand where the last primer binds isn't replicated. These ends of linear (chromosomal) DNA consists of noncoding DNA that contains repeat sequences and are called telomeres. As a result, a part of the telomere is removed in every cycle of DNA Replication.


6) The DNA Replication is not completed before a mechanism of repair fixes possible errors caused during the replication. Enzymes like nucleases remove the wrong nucleotides and the DNA Polymerase fills the gaps.
Reply With Quote
The Following User Says Thank You to AFRMS For This Useful Post:
dr.atifrana (Tuesday, June 16, 2009)