View Single Post
  #7  
Old Tuesday, April 10, 2007
samreen's Avatar
samreen samreen is offline
Senior Member
 
Join Date: May 2006
Posts: 391
Thanks: 16
Thanked 54 Times in 39 Posts
samreen is on a distinguished road
Arrow

Causes

carbondioxide variations

Carbon dioxide during the last 400,000 years and the rapid rise since the Industrial Revolution; changes in the Earth's orbit around the Sun, known as Milankovitch cycles, are believed to be the pacemaker of the 100,000 year ice age cycle.
The climate system varies through natural, internal processes and in response to variations in external "forcing" from both human and natural causes. These forcing factors include solar activity, volcanic emissions, variations in the earth's orbit (orbital forcing) and greenhouse gases. The detailed causes of the recent warming remain an active field of research, but the scientific consensus identifies greenhouse gases as the main influence.
Contrasting with this consensus view, other hypotheses have been proposed to explain all or most of the observed increase in global temperatures, including: the warming is within the range of natural variation; the warming is a consequence of coming out of a prior cool period, namely the Little Ice Age; and the warming is primarily a result of variances in solar radiation.
Adding carbon dioxide (CO2) or methane (CH4) to Earth's atmosphere, with no other changes, will make the planet's surface warmer. Greenhouse gases create a natural greenhouse effect without which temperatures on Earth would be an estimated 30 °C (54 °F) lower, so that Earth would be uninhabitable. It is therefore not correct to say that there is a debate between those who "believe in" and "oppose" the greenhouse effect as such. Rather, the debate concerns the net effect of the addition of greenhouse gases when allowing for compounding or mitigating factors.
One example of an important feedback process is ice-albedo feedback. The increased CO2 in the atmosphere warms the Earth's surface and leads to melting of ice near the poles. As the ice melts, land or open water takes its place. Both land and open water are on average less reflective than ice, and thus absorb more solar radiation. This causes more warming, which in turn causes more melting, and this cycle continues.
Due to the thermal inertia of the Earth's oceans and slow responses of other indirect effects, the Earth's current climate is not in equilibrium with the forcing imposed by increased greenhouse gases. Climate commitment studies indicate that, even if greenhouse gases were stabilized at present day levels, a further warming of about 0.5 °C (0.9 °F) would still occur.

Types of Greenhouse Gases

Recent increases in atmospheric CO2. The monthly CO2 measurements display small seasonal oscillations in an overall yearly uptrend; each year's maximum is reached during the northern hemisphere's late spring, and declines during the northern hemisphere growing season as plants remove some CO2 from the atmosphere.

The greenhouse effect, first discovered by Joseph Fourier in 1824, and first investigated quantitatively by Svante Arrhenius in 1896, is the process in which the emission of infrared radiation by atmospheric gasses warms a planet's surface. On Earth, the major natural greenhouse gases are water vapor, which causes about 36-70% of the greenhouse effect (not including clouds); carbon dioxide, which causes 9-26%; methane, which causes 4-9%, and ozone, which causes 3-7%.

Greenhouse gases occur naturally in the environment and also result from human activities. By far the most abundant greenhouse gas is water vapor, which reaches the atmosphere through evaporation from oceans, lakes, and rivers.
Carbon dioxide is the next most abundant greenhouse gas. It flows into the atmosphere from many natural processes, such as volcanic eruptions; the respiration of animals, which breathe in oxygen and exhale carbon dioxide; and the burning or decay of organic matter, such as plants. Carbon dioxide leaves the atmosphere when it is absorbed into ocean water and through the photosynthesis of plants, especially trees. Photosynthesis breaks up carbon dioxide, releasing oxygen into the atmosphere and incorporating the carbon into new plant tissue.
Humans escalate the amount of carbon dioxide released to the atmosphere when they burn fossil fuels, solid wastes, and wood and wood products to heat buildings, drive vehicles, and generate electricity. At the same time, the number of trees available to absorb carbon dioxide through photosynthesis has been greatly reduced by deforestation, the long-term destruction of forests by indiscriminate cutting of trees for lumber or to clear land for agricultural activities.
Ultimately, the oceans and other natural processes absorb excess carbon dioxide in the atmosphere. However, human activities have caused carbon dioxide to be released to the atmosphere at rates much faster than that at which Earth’s natural processes can cycle this gas. In 1750 there were about 281 molecules of carbon dioxide per million molecules of air (abbreviated as parts per million, or ppm). In 2006 two major scientific organizations-the World Meteorological Organization (WMO) and the United States National Oceanic and Atmospheric Administration (NOAA)-reported that levels of carbon dioxide in the atmosphere had hit a record high. Using different measurement techniques, the WMO said carbon dioxide levels had risen to 377 ppm, an annual increase of 1.8 ppm, and the NOAA reported a figure of 381 ppm for a yearly increase of 2.6 ppm. If current predictions prove accurate, by the year 2100 carbon dioxide will reach concentrations of more than 540 to 970 ppm. At the highest estimation, this concentration would be triple the levels prior to the Industrial Revolution, the widespread replacement of human labor by machines that began in Britain in the mid-18th century and soon spread to other parts of Europe and to the United States. Methane is an even more effective insulator, trapping over 20 times more heat than does the same amount of carbon dioxide. Methane is emitted during the production and transport of coal, natural gas, and oil. Methane also comes from rotting organic waste in landfills, and it is released from certain animals, especially cows, as a byproduct of digestion. Since the beginning of the Industrial Revolution in the mid-1700s, the amount of methane in the atmosphere has more than doubled.
Nitrous oxide is a powerful insulating gas released primarily by burning fossil fuels and by plowing farm soils. Nitrous oxide traps about 300 times more heat than does the same amount of carbon dioxide. The concentration of nitrous oxide in the atmosphere has increased 17 percent over preindustrial levels.

In addition, greenhouse gases are produced in many manufacturing processes. Perfluorinated compounds result from the smelting of aluminum. Hydrofluorocarbons form during the manufacture of many products, including the foams used in insulation, furniture, and car seats. Refrigerators built in some developing nations still use chlorofluorocarbons as coolants. In addition to their ability to retain atmospheric heat, some of these synthetic chemicals also destroy Earth’s high-altitude ozone layer, the protective layer of gases that shields Earth from damaging ultraviolet radiation. For most of the 20th century these chemicals have been accumulating in the atmosphere at unprecedented rates. But since 1995, in response to regulations enforced by the Montréal Protocol on Substances that Deplete the Ozone Layer and its amendments, the atmospheric concentrations of many of these gases are either increasing more slowly or decreasing.
Scientists are growing concerned about other gases produced from manufacturing processes that pose an environmental risk. In 2000 scientists identified a substantial rise in atmospheric concentrations of a newly identified synthetic compound called trifluoromethyl sulfur pentafluoride. Atmospheric concentrations of this gas are rising quickly, and although it still is extremely rare in the atmosphere, scientists are concerned because the gas traps heat more effectively than all other known greenhouse gases. Perhaps more worrisome, scientists have been unable to confirm the industrial source of the gas.
Even a modest rise in sea level will greatly change coastal ecosystems. A 50-cm (20-in) rise will submerge about half of the present coastal wetlands of the United States. New marshes will form in many places, but not where urban areas and developed landscapes block the way. This sea-level rise will cover much of the Florida Everglades.
Scientists use elaborate computer models of temperature, precipitation patterns, and atmosphere circulation to study global warming. Based on these models, scientists have made several predictions about how global warming will affect weather, sea levels, coastlines, agriculture, wildlife, and human health.


Earth's Protection Shield is Being Destroyed -Ozone Depletion and Global Warming

Stratospheric Ozone
The Earth's atmosphere is made up of different layers. The layer closest to the surface is called the troposphere which extends from the Earth's surface up to about 10 kilometers. The ozone layer is located above the troposphere in the stratosphere (10 km to about 50 km high). Stratospheric ozone is Earth's natural protection for all life forms, shielding our planet from harmful ultraviolet-B (UV-B) radiation. UV-B radiation is harmful to humans, animals, and plant life. The ozone layer is being destroyed by certain industrial chemicals including ozone depleting refrigerants, halons, and methyl bromide, a deadly pesticide used on crops.
Ozone depletion damage gets much worse when the stratosphere is very cold. This has been the case the past two years, causing extensive ozone depletion. This past winter, ozone depletion reached the most severe levels ever recorded over the Northern Hemisphere. Western United States ozone levels also continue to drop 3-4 percent per decade. Even if all of our efforts to stop harmful emissions are successful, the ozone layer is not expected to begin recovery until around 2020 at the earliest.

Global Warming Can Increase Ozone Depletion

Scientist's are concerned that continued global warming will accelerate ozone destruction and increase stratospheric ozone depletion. Ozone depletion gets worse when the stratosphere (where the ozone layer is), becomes colder. Because global warming traps heat in the troposphere, less heat reaches the stratosphere which will make it colder. Greenhouse gases act like a blanket for the troposphere and make the stratosphere colder. In other words, global warming can make ozone depletion much worse right when it is supposed to begin its recovery during the next century.



Deforestation
After carbon emissions caused by humans, deforestation is the second principle cause of atmospheric carbn dioxide.Deforestation is responsible for 25% of all carbon emissions entering the atmosphere, by the burning and cutting of about 34 million acres of trees each year. We are losing millions of acres of rainforests each year, the equivalent in area to the size of Italy.The destroying of tropical forests alone is throwing hundreds of millions of tons of carbon dioxide into the atmosphere each year. We are also losing temperate forests. The temperate forests of the world account for an absorption rate of 2 billion tons of carbon annually. In the temperate forests of Siberia alone, the earth is losing 10 million acres per year.
__________________
I believe in God even though He is silent.
Reply With Quote