View Single Post
  #18  
Old Tuesday, August 07, 2007
Sureshlasi's Avatar
Sureshlasi Sureshlasi is offline
Senior Member
Medal of Appreciation: Awarded to appreciate member's contribution on forum. (Academic and professional achievements do not make you eligible for this medal) - Issue reason: Best Moderator Award: Awarded for censoring all swearing and keeping posts in order. - Issue reason: Best ModMember of the Year: Awarded to those community members who have made invaluable contributions to the Community in the particular year - Issue reason: For the year 2007Diligent Service Medal: Awarded upon completion of 5 years of dedicated services and contribution to the community. - Issue reason:
 
Join Date: Mar 2006
Location: پاکستان
Posts: 2,282
Thanks: 483
Thanked 3,082 Times in 760 Posts
Sureshlasi is a name known to allSureshlasi is a name known to allSureshlasi is a name known to allSureshlasi is a name known to allSureshlasi is a name known to allSureshlasi is a name known to all
Default Topic # 16

eye


eye, organ of vision and light perception. In humans the eye is of the camera type, with an iris diaphragm and variable focusing, or accommodation. Other types of eye are the simple eye, found in many invertebrates, and the compound eye, found in insects and many other arthropods. In an alternate pathway to the one that transmits visual images, the eye perceives sunlight. This information stimulates the hypothalamus, which passes the information on to the pineal gland. The pineal gland then regulates its production of the sleep-inducing chemical, melatonin, essentially setting the body's circadian clock



The Human Eye



Anatomy and Function



The human eye is a spheroid structure that rests in a bony cavity (socket, or orbit) on the frontal surface of the skull. The thick wall of the eyeball contains three covering layers: the sclera, the choroid, and the retina. The sclera is the outermost layer of eye tissue; part of it is visible as the “white” of the eye. In the center of the visible sclera and projecting slightly, in the manner of a crystal raised above the surface of a watch, is the cornea, a transparent membrane that acts as the window of the eye. A delicate membrane, the conjunctiva, covers the visible portion of the sclera.

Underneath the sclera is the second layer of tissue, the choroid, composed of a dense pigment and blood vessels that nourish the tissues. Near the center of the visible portion of the eye, the choroid layer forms the ciliary body, which contains the muscles used to change the shape of the lens (that is, to focus). The ciliary body in turn merges with the iris, a diaphragm that regulates the size of the pupil. The iris is the area of the eye where the pigmentation of the choroid layer, usually brown or blue, is visible because it is not covered by the sclera. The pupil is the round opening in the center of the iris; it is dilated and contracted by muscular action of the iris, thus regulating the amount of light that enters the eye. Behind the iris is the lens, a transparent, elastic, but solid ellipsoid body that focuses the light on the retina, the third and innermost layer of tissue.

The retina is a network of nerve cells, notably the rods and cones, and nerve fibers that fan out over the choroid from the optic nerve as it enters the rear of the eyeball from the brain. Unlike the two outer layers of the eye, the retina does not extend to the front of the eyeball. Between the cornea and iris and between the iris and lens are small spaces filled with aqueous humor, a thin, watery fluid. The large spheroid space in back of the lens (the center of the eyeball) is filled with vitreous humor, a jellylike substance.

Accessory structures of the eye are the lacrimal gland and its ducts in the upper lid, which bathe the eye with tears, keeping the cornea moist, clean, and brilliant, and drainage ducts that carry the excess moisture to the interior of the nose. The eye is protected from dust and dirt by the eyelashes, eyelid, and eyebrows. Six muscles extend from the eyesocket to the eyeball, enabling it to move in various directions.



Eye Disorders


In addition to errors of refraction (astigmatism, farsightedness, and nearsightedness), the human eye is subject to various types of injury, infection, and changes due to systemic disease. Strabismus is a condition in which the eye turns in or out because of an imbalance in the eye musculature. A cornea damaged by accident or illness can sometimes be corrected by excimer laser or surgically replaced with a healthy one from a deceased person. Experimental retinal implants, consisting of electrode arrays that receive visual data from an external camera, have been used to partially restore sight to persons with damaged retinas, enabling some recognition of shapes, light and dark areas, and motion. Eyes that are used in various ways for surgical repairs are supplied by eye banks. People can arrange to have their eyes donated to such organizations after their death.




Eyes in Other Animals

The camera type of eye, which forms excellent images, is found in all vertebrates, in cephalopods (such as the squid and octopus), and in some spiders. In each of those groups the camera type of eye evolved independently. In some species, e.g., kestrels, the eye can perceive ultraviolet light, an aid to tracking prey.

Simple eyes, or ocelli, are found in a great variety of invertebrate animals, including flatworms, annelid worms (such as the earthworm), mollusks, crustaceans, and insects. An ocellus has a layer of photosensitive cells that can set up impulses in nerve fibers; the more advanced types also have a rigid lens for concentrating light on this layer. Simple eyes can perceive light and dark, enabling the animal to perceive the location and movement of objects. They form no image, or a very poor one.

The compound eye is found in a large number of arthropods, including various species of insects, crustaceans, centipedes, and millipedes. A compound eye consists of from 12 to over 1,000 tubular units, called ommatidia, each with a rigid lens and photosensitive cells; each omnatidium is surrounded by pigment cells and receives only the light from its own lens. The lenses fit together on the surface of the eye, forming the large, many-faceted structure that can be seen, for example, in the fly. Each ommatidium supplies a small piece of the image perceived by the animal. The compound eye creates a poor image and cannot perceive small or distant objects; however, it is superior to the camera eye in its ability to discriminate brief flashes of light and movement, and in some insects (e.g., bees) it can detect the polarization of light. Because arthropods are so numerous, the compound eye is the commonest type of animal eye.






vision


vision, physiological sense of sight by which the form, color, size, movements, and distance of objects are perceived.


Vision in Humans

The human eye functions somewhat like a camera; that is, it receives and focuses light upon a photosensitive receiver, the retina. The light rays are bent and brought to focus as they pass through the cornea and the lens. The shape of the lens can be changed by the action of the ciliary muscles so that clear images of objects at different distances and of moving objects are formed on the retina. This ability to focus objects at varying distances is known as accommodation.


The Role of the Retina

The retina—the embryonic outgrowth of the brain—is a very complex tissue. Its most important elements are its many light-sensitive nerve cells, the rods and cones. The cones secrete the pigment iodopsin and are most effective in bright light; they alone provide color vision. The rods, which secrete a substance called visual purple, or rhodopsin, provide vision in dim light or semidarkness; since rods do not provide color vision, objects in such light appear in shades of gray.

Light rays brought to focus on the rods and cones produce a chemical reaction in those cells, in which the two pigments are broken down to form a protein and a vitamin A compound. This chemical process stimulates an electrical impulse that is sent to the brain. The structural change of pigment is normally balanced by the formation of new pigment through the recombination of the protein and vitamin A compound; thus vision is uninterrupted.

The division of function between rods and cones is a result of the different sensitivity of their pigments to light. The iodopsin of cone cells is less sensitive than rhodopsin, and therefore is not activated by weak light, while in bright light the highly sensitive rhodopsin of rod cells breaks down so rapidly that it soon becomes inactive. There is a depression near the center of the retina called the fovea that contains only cone cells. It provides the keenest possible vision when an object is viewed directly in bright light. In dim light objects must be viewed somewhat to one side so the light rays fall on the area of the retina that contains rod cells.





The Role of the Optic Nerve and Brain

The nerve impulses from the rods and cones are transmitted by nerve fibers across the retina to an area where the fibers converge and form the optic nerve. The area where the optic nerve passes through the retina is devoid of rods and cones and is known as the blind spot. The optic nerve from the left eye and that from the right eye meet at a point called the optic chiasma. There each nerve separates into two branches. The inner branch from each eye crosses over and joins the outer branch from the other eye. Two optic tracts exit thereby from the chiasma, transferring the impulses from the left side of each eye to the left visual center in the cerebral cortex (see brain) and the impulses from the right half of each eye to the right cerebral cortex. The brain then fuses the two separate images to form a single image. The image formed on the retina is an inverted one, because the light rays entering the eye are refracted and cross each other. However, the mental image as interpreted by the brain is right side up. How the brain corrects the inverted image to produce normal vision is unknown, but the ability is thought to be acquired early in life, with the aid of the other senses.






Color and Stereoscopic Vision

Color vision is based on the ability to discriminate between the various wavelengths that constitute the spectrum. The Young-Helmholtz theory, developed in 1802 by Thomas Young and H. L. F. Helmholtz, is based on the assumption that there are three fundamental color sensations—red, green, and blue—and that there are three different groups of cones in the retina, each group particularly sensitive to one of these three colors. Light from a red object, for example, stimulates the cones that are more sensitive to red than the other cones. Other colors (besides red, green, and blue) are seen when the cone cells are stimulated in different combinations. Only in recent years has conclusive evidence shown that the Young-Helmholtz theory is, indeed, accurate. The sensation of white is produced by the combination of the three primary colors, and black results from the absence of stimulation.

Humans normally have binocular vision, i.e., separate images of the visual field are formed by each eye; the two images fuse to form a single impression. Because each eye forms its own image from a slightly different angle, a stereoscopic effect is obtained, and depth, distance, and solidity of an object are appreciated. Stereoscopic color vision is found primarily among the higher primates, and it developed fairly late on the evolutionary scale.






Defects of Vision

Defects of vision include astigmatism, color blindness, farsightedness, and nearsightedness. The absence of rods causes a condition known as night blindness; an absence of cones constitutes legal blindness.


astigmatism

It is a type of faulty vision caused by a nonuniform curvature in the refractive surfaces—usually the cornea, less frequently the lens—of the eye. As a result, light rays do not all come to a single focal point on the retina. Instead, some focus on the retina while others focus in front of or behind it. The condition may be congenital, or it may result from disease or injury; it can occur in addition to nearsightedness or farsightedness. The spherical lenses used to correct nearsightedness and farsightedness must be specially adapted to correct the out-of-focus plane of vision of the astigmatic eye. When the patient observes a pattern of straight lines placed at various angles, those running in one direction appear sharp while those in other directions (particularly at right angles to the sharp lines) appear blurred. A special cylindrical lens is placed in the out-of-focus axis to correct the condition. In many cases contact lenses are the most effective means of correcting astigmatism.





color blindness

color blindness, visual defect resulting in the inability to distinguish colors. About 8% of men and 0.5% of women experience some difficulty in color perception. Color blindness is usually an inherited sex-linked characteristic, transmitted through, but recessive in, females. Acquired color blindness results from certain degenerative diseases of the eyes. Most of those with defective color vision are only partially color-blind to red and green, i.e., they have a limited ability to distinguish reddish and greenish shades. Those who are completely color-blind to red and green see both colors as a shade of yellow. Completely color-blind individuals can recognize only black, white, and shades of gray. Color blindness is usually not related to visual acuity; it is significant, therefore, only when persons who suffer from it seek employment in occupations where color recognition is important, such as airline pilots, railroad engineers, and others who must recognize red and green traffic signals. Tests for color blindness include identifying partially concealed figures or patterns from a mass of colored dots and matching skeins of wool or enameled chips of various colors.







farsightedness

farsightedness or hyperopia,condition in which far objects can be seen easily but there is difficulty in near vision. It is caused by a defect of refraction in which the image is focused behind the retina of the eye rather than upon it, either because the eyeball is too short or because the refractive power of the lens is too weak. Presbyopia, a similarly faulty vision, is attributable to physiological changes in the lens brought on by age. Corrective eyeglasses with convex lenses compensate for the refractive errors.




nearsightedness

nearsightedness or myopia,defect of vision in which far objects appear blurred but near objects are seen clearly. Because the eyeball is too long or the refractive power of the eye's lens is too strong, the image is focused in front of the retina rather than upon it. Corrective eyeglasses with concave lenses compensate for the refractive error and help to focus the image on the retina. Hard corneal contact lenses or soft hydrophilic contact lenses are another option, usually offering better acuity and peripheral vision than do eyeglasses. (Contact lenses may be troublesome for people who tend to get eye infections or have hand tremors, however.) Nearsightedness can also be corrected by using laser cornea surgery and a device called a microkeratome to flatten the eye, or by surgically implanting a corrective lens behind the iris.









_______________________ The End ___________________________
__________________
ஜ иστнιπg ιš ιмթΘรรιвlε тσ α ωιℓℓιиg нєαят ஜ

Last edited by Sureshlasi; Saturday, September 01, 2007 at 01:12 AM.
Reply With Quote