Thread: EDS- notes
View Single Post
Old Tuesday, November 13, 2007
Predator's Avatar
Predator Predator is offline
Senior Member
Medal of Appreciation: Awarded to appreciate member's contribution on forum. (Academic and professional achievements do not make you eligible for this medal) - Issue reason:
Join Date: Aug 2007
Location: Karachi
Posts: 2,572
Thanks: 813
Thanked 1,975 Times in 838 Posts
Predator is a splendid one to beholdPredator is a splendid one to beholdPredator is a splendid one to beholdPredator is a splendid one to beholdPredator is a splendid one to beholdPredator is a splendid one to behold
Post Blood



Blood, vital fluid found in humans and other animals that provides important nourishment to all body organs and tissues and carries away waste materials. Sometimes referred to as “the river of life,” blood is pumped from the heart through a network of blood vessels collectively known as the circulatory system.

An adult human has about 5 to 6 liters (1 to 2 gal) of blood, which is roughly 7 to 8 percent of total body weight. Infants and children have comparably lower volumes of blood, roughly proportionate to their smaller size. The volume of blood in an individual fluctuates. During dehydration, for example while running a marathon, blood volume decreases. Blood volume increases in circumstances such as pregnancy, when the mother’s blood needs to carry extra oxygen and nutrients to the baby.

Blood carries oxygen from the lungs to all the other tissues in the body and, in turn, carries waste products, predominantly carbon dioxide, back to the lungs where they are released into the air. When oxygen transport fails, a person dies within a few minutes. Food that has been processed by the digestive system into smaller components such as proteins, fats, and carbohydrates is also delivered to the tissues by the blood. These nutrients provide the materials and energy needed by individual cells for metabolism, or the performance of cellular function. Waste products produced during metabolism, such as urea and uric acid, are carried by the blood to the kidneys, where they are transferred from the blood into urine and eliminated from the body. In addition to oxygen and nutrients, blood also transports special chemicals, called hormones, that regulate certain body functions. The movement of these chemicals enables one organ to control the function of another even though the two organs may be located far apart. In this way, the blood acts not just as a means of transportation but also as a communications system.

The blood is more than a pipeline for nutrients and information; it is also responsible for the activities of the immune system, helping fend off infection and fight disease. In addition, blood carries the means for stopping itself from leaking out of the body after an injury. The blood does this by carrying special cells and proteins, known as the coagulation system, that start to form clots within a matter of seconds after injury.

Blood is vital to maintaining a stable body temperature; in humans, body temperature normally fluctuates within a degree of 37.0° C (98.6° F). Heat production and heat loss in various parts of the body are balanced out by heat transfer via the bloodstream. This is accomplished by varying the diameter of blood vessels in the skin. When a person becomes overheated, the vessels dilate and an increased volume of blood flows through the skin. Heat dissipates through the skin, effectively lowering the body temperature. The increased flow of blood in the skin makes the skin appear pink or flushed. When a person is cold, the skin may become pale as the vessels narrow, diverting blood from the skin and reducing heat loss.

About 55 percent of the blood is composed of a liquid known as plasma. The rest of the blood is made of three major types of cells: red blood cells (also known as erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes).

A Plasma
Plasma consists predominantly of water and salts. The kidneys carefully maintain the salt concentration in plasma because small changes in its concentration will cause cells in the body to function improperly. In extreme conditions this can result in seizures, coma, or even death. The pH of plasma, the common measurement of the plasma’s acidity, is also carefully controlled by the kidneys within the neutral range of 6.8 to 7.7. Plasma also contains other small molecules, including vitamins, minerals, nutrients, and waste products. The concentrations of all of these molecules must be carefully regulated.

Plasma is usually yellow in color due to proteins dissolved in it. However, after a person eats a fatty meal, that person’s plasma temporarily develops a milky color as the blood carries the ingested fats from the intestines to other organs of the body.

Plasma carries a large number of important proteins, including albumin, gamma globulin, and clotting factors. Albumin is the main protein in blood. It helps regulate the water content of tissues and blood. Gamma globulin is composed of tens of thousands of unique antibody molecules. Antibodies neutralize or help destroy infectious organisms. Each antibody is designed to target one specific invading organism. For example, chicken pox antibody will target chicken pox virus, but will leave an influenza virus unharmed. Clotting factors, such as fibrinogen, are involved in forming blood clots that seal leaks after an injury. Plasma that has had the clotting factors removed is called serum. Both serum and plasma are easy to store and have many medical uses.

B -Red Blood Cells
Red blood cells make up almost 45 percent of the blood volume. Their primary function is to carry oxygen from the lungs to every cell in the body. Red blood cells are composed predominantly of a protein and iron compound, called hemoglobin, that captures oxygen molecules as the blood moves through the lungs, giving blood its red color. As blood passes through body tissues, hemoglobin then releases the oxygen to cells throughout the body. Red blood cells are so packed with hemoglobin that they lack many components, including a nucleus, found in other cells.

The membrane, or outer layer, of the red blood cell is flexible, like a soap bubble, and is able to bend in many directions without breaking. This is important because the red blood cells must be able to pass through the tiniest blood vessels, the capillaries, to deliver oxygen wherever it is needed. The capillaries are so narrow that the red blood cells, normally shaped like a disk with a concave top and bottom, must bend and twist to maneuver single file through them.

C -Blood Type
There are several types of red blood cells and each person has red blood cells of just one type. Blood type is determined by the occurrence or absence of substances, known as recognition markers or antigens, on the surface of the red blood cell. Type A blood has just marker A on its red blood cells while type B has only marker B. If neither A nor B markers are present, the blood is type O. If both the A and B markers are present, the blood is type AB. Another marker, the Rh antigen (also known as the Rh factor), is present or absent regardless of the presence of A and B markers. If the Rh marker is present, the blood is said to be Rh positive, and if it is absent, the blood is Rh negative. The most common blood type is A positive—that is, blood that has an A marker and also an Rh marker. More than 20 additional red blood cell types have been discovered.

Blood typing is important for many medical reasons. If a person loses a lot of blood, that person may need a blood transfusion to replace some of the lost red blood cells. Since everyone makes antibodies against substances that are foreign, or not of their own body, transfused blood must be matched so as not to contain these substances. For example, a person who is blood type A positive will not make antibodies against the A or Rh markers, but will make antibodies against the B marker, which is not on that person’s own red blood cells. If blood containing the B marker (from types B positive, B negative, AB positive, or AB negative) is transfused into this person, then the transfused red blood cells will be rapidly destroyed by the patient’s anti-B antibodies.

In this case, the transfusion will do the patient no good and may even result in serious harm. For a successful blood transfusion into an A positive blood type individual, blood that is type O negative, O positive, A negative, or A positive is needed because these blood types will not be attacked by the patient’s anti-B antibodies.

D -White Blood Cells
White blood cells only make up about 1 percent of blood, but their small number belies their immense importance. They play a vital role in the body’s immune system—the primary defense mechanism against invading bacteria, viruses, fungi, and parasites. They often accomplish this goal through direct attack, which usually involves identifying the invading organism as foreign, attaching to it, and then destroying it. This process is referred to as phagocytosis.

White blood cells also produce antibodies, which are released into the circulating blood to target and attach to foreign organisms. After attachment, the antibody may neutralize the organism, or it may elicit help from other immune system cells to destroy the foreign substance. There are several varieties of white blood cells, including neutrophils, monocytes, and lymphocytes, all of which interact with one another and with plasma proteins and other cell types to form the complex and highly effective immune system.

E -Platelets and Clotting
The smallest cells in the blood are the platelets, which are designed for a single purpose—to begin the process of coagulation, or forming a clot, whenever a blood vessel is broken. As soon as an artery or vein is injured, the platelets in the area of the injury begin to clump together and stick to the edges of the cut. They also release messengers into the blood that perform a variety of functions: constricting the blood vessels to reduce bleeding, attracting more platelets to the area to enlarge the platelet plug, and initiating the work of plasma-based clotting factors, such as fibrinogen. Through a complex mechanism involving many steps and many clotting factors, the plasma protein fibrinogen is transformed into long, sticky threads of fibrin. Together, the platelets and the fibrin create an intertwined meshwork that forms a stable clot. This self-sealing aspect of the blood is crucial to survival.

Blood is produced in the bone marrow, a tissue in the central cavity inside almost all of the bones in the body. In infants, the marrow in most of the bones is actively involved in blood cell formation. By later adult life, active blood cell formation gradually ceases in the bones of the arms and legs and concentrates in the skull, spine, ribs, and pelvis.

Red blood cells, white blood cells, and platelets grow from a single precursor cell, known as a hematopoietic stem cell. Remarkably, experiments have suggested that as few as 10 stem cells can, in four weeks, multiply into 30 trillion red blood cells, 30 billion white blood cells, and 1.2 trillion platelets—enough to replace every blood cell in the body.

Red blood cells have the longest average life span of any of the cellular elements of blood. A red blood cell lives 100 to 120 days after being released from the marrow into the blood. Over that period of time, red blood cells gradually age. Spent cells are removed by the spleen and, to a lesser extent, by the liver. The spleen and the liver also remove any red blood cells that become damaged, regardless of their age. The body efficiently recycles many components of the damaged cells, including parts of the hemoglobin molecule, especially the iron contained within it.

The majority of white blood cells have a relatively short life span. They may survive only 18 to 36 hours after being released from the marrow. However, some of the white blood cells are responsible for maintaining what is called immunologic memory. These memory cells retain knowledge of what infectious organisms the body has previously been exposed to. If one of those organisms returns, the memory cells initiate an extremely rapid response designed to kill the foreign invader. Memory cells may live for years or even decades before dying.

Memory cells make immunizations possible. An immunization, also called a vaccination or an inoculation, is a method of using a vaccine to make the human body immune to certain diseases. A vaccine consists of an infectious agent that has been weakened or killed in the laboratory so that it cannot produce disease when injected into a person, but can spark the immune system to generate memory cells and antibodies specific for the infectious agent. If the infectious agent should ever invade that vaccinated person in the future, these memory cells will direct the cells of the immune system to target the invader before it has the opportunity to cause harm.

Platelets have a life span of seven to ten days in the blood. They either participate in clot formation during that time or, when they have reached the end of their lifetime, are eliminated by the spleen and, to a lesser extent, by the liver.

Many diseases are caused by abnormalities in the blood. These diseases are categorized by which component of the blood is affected.

A -Red Blood Cell Diseases
One of the most common blood diseases worldwide is anemia, which is characterized by an abnormally low number of red blood cells or low levels of hemoglobin. One of the major symptoms of anemia is fatigue, due to the failure of the blood to carry enough oxygen to all of the tissues.

The most common type of anemia, iron-deficiency anemia, occurs because the marrow fails to produce sufficient red blood cells. When insufficient iron is available to the bone marrow, it slows down its production of hemoglobin and red blood cells. In the United States, iron deficiency occurs most commonly due to poor nutrition. In other areas of the world, however, the most common causes of iron-deficiency anemia are certain infections that result in gastrointestinal blood loss and the consequent chronic loss of iron. Adding supplemental iron to the diet is often sufficient to cure iron-deficiency anemia.

Some anemias are the result of increased destruction of red blood cells, as in the case of sickle-cell anemia, a genetic disease most common in persons of African ancestry. The red blood cells of sickle-cell patients assume an unusual crescent shape, causing them to become trapped in some blood vessels, blocking the flow of other blood cells to tissues and depriving them of oxygen.

B -White Blood Cell Diseases
Some white blood cell diseases are characterized by an insufficient number of white blood cells. This can be caused by the failure of the bone marrow to produce adequate numbers of normal white blood cells, or by diseases that lead to the destruction of crucial white blood cells. These conditions result in severe immune deficiencies characterized by recurrent infections.

Any disease in which excess white blood cells are produced, particularly immature white blood cells, is called leukemia, or blood cancer. Many cases of leukemia are linked to gene abnormalities, resulting in unchecked growth of immature white blood cells. If this growth is not halted, it often results in the death of the patient. These genetic abnormalities are not inherited in the vast majority of cases, but rather occur after birth. Although some causes of these abnormalities are known, for example exposure to high doses of radiation or the chemical benzene, most remain poorly understood.

Treatment for leukemia typically involves the use of chemotherapy, in which strong drugs are used to target and kill leukemic cells, permitting normal cells to regenerate. In some cases, bone marrow transplants are effective. Much progress has been made over the last 30 years in the treatment of this disease. In one type of childhood leukemia, more than 80 percent of patients can now be cured of their disease.

C -Coagulation Diseases
One disease of the coagulation system is hemophilia, a genetic bleeding disorder in which one of the plasma clotting factors, usually factor VIII, is produced in abnormally low quantities, resulting in uncontrolled bleeding from minor injuries. Although individuals with hemophilia are able to form a good initial platelet plug when blood vessels are damaged, they are not easily able to form the meshwork that holds the clot firmly intact.

As a result, bleeding may occur some time after the initial traumatic event. Treatment for hemophilia relies on giving transfusions of factor VIII. Factor VIII can be isolated from the blood of normal blood donors but it also can be manufactured in a laboratory through a process known as gene cloning.

The Red Cross and a number of other organizations run programs, known as blood banks, to collect, store, and distribute blood and blood products for transfusions. When blood is donated, its blood type is determined so that only appropriately matched blood is given to patients needing a transfusion. Before using the blood, the blood bank also tests it for the presence of disease-causing organisms, such as hepatitis viruses and human immunodeficiency virus (HIV), the cause of acquired immunodeficiency syndrome (AIDS).
This blood screening dramatically reduces, but does not fully eliminate, the risk to the recipient of acquiring a disease through a blood transfusion. Blood donation, which is extremely safe, generally involves giving about 400 to 500 ml (about 1 pt) of blood, which is only about 7 percent of a person’s total blood.

One-celled organisms have no need for blood. They are able to absorb nutrients, expel wastes, and exchange gases with their environment directly. Simple multicelled marine animals, such as sponges, jellyfishes, and anemones, also do not have blood. They use the seawater that bathes their cells to perform the functions of blood. However, all more complex multicellular animals have some form of a circulatory system using blood. In some invertebrates, there are no cells analogous to red blood cells. Instead, hemoglobin, or the related copper compound heocyanin, circulates dissolved in the plasma.

The blood of complex multicellular animals tends to be similar to human blood, but there are also some significant differences, typically at the cellular level. For example, fish, amphibians, and reptiles possess red blood cells that have a nucleus, unlike the red blood cells of mammals. The immune system of invertebrates is more primitive than that of vertebrates, lacking the functionality associated with the white blood cell and antibody system found in mammals. Some arctic fish species produce proteins in their blood that act as a type of antifreeze, enabling them to survive in environments where the blood of other animals would freeze. Nonetheless, the essential transportation, communication, and protection functions that make blood essential to the continuation of life occur throughout much of the animal kingdom.
No signature...
Reply With Quote
The Following 5 Users Say Thank You to Predator For This Useful Post:
Almasha Alfarsi (Wednesday, September 09, 2015), hinanazar (Friday, November 13, 2009), madiha alvi (Tuesday, September 10, 2013), mustansar~hussain (Monday, March 14, 2016), pure (Sunday, August 16, 2009)