Friday, April 19, 2024
08:03 PM (GMT +5)

Go Back   CSS Forums > CSS Compulsory Subjects > Islamiat

Reply Share Thread: Submit Thread to Facebook Facebook     Submit Thread to Twitter Twitter     Submit Thread to Google+ Google+    
 
LinkBack Thread Tools Search this Thread
  #11  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abu Al-nasr Al-farabi (870-950 C.e.)

ABU AL-NASR AL-FARABI
(870-950 C.E.)


Abu Nasr Mohammad Ibn al-Farakh al-Farabi was born in a small village Wasij, near Farab in Turkistan in 259 A.H. (870 C.E.). His parents were originally of Persian descent, but his ancestors had migrated to Turkistan. Known as al-Phrarabius in Europe, Farabi was the son of a general. He completed his earlier education at Farab and Bukhara but, later on, he went to Baghdad for higher studies, where he studied and worked for a long time viz., from 901 C.E. to 942 C.E. During this period he acquired mastery over several languages as well as various branches of knowledge and technology. He lived through the reign of six Abbasid Caliphs. As a philosopher and scientist, he acquired great proficiency in various branches of learning and is reported to have been an expert in different languages.

Farabi travelled to many distant lands and studied for some time in Damascus and Egypt, but repeatedly came back to Baghdad, until he visited Saif al-Daula's court in Halab (Allepo). He became one of the constant companions of the King, and it was here at Halab that his fame spread far and wide. During his early years he was a Qadi (Judge), but later on the took up teaching as his profession. During the course of his career, he had suffered great hardships and at one time was the caretaker of a garden. He died a bachelor in Damascus in 339 A.H./950 C.E. at the age of 80 years.

Farabi contributed considerably to science, philosophy, logic, sociology, medicine, mathematics and music. His major contributions seem to be in philosophy, logic and sociology and, of course, stands out as an Encyclopedist. As a philosopher, he may be classed as a Neoplatonist who tried to synthesize Platonism and Aristotelism with theology and he wrote such rich commentaries on Aristotle's physics, meteorology, logic, etc., in addition to a large number of books on several other subjects embodying his original contribution, that he came to be known as the 'Second Teacher' (al-Mou'allim al-Thani) Aristotle being the First. One of the important contributions of Farabi was to make the study of logic more easy by dividing it into two categories viz., Takhayyul (idea) and Thubut (proof).

In sociology he wrote several books out of which Ara Ahl al-Madina al-Fadila became famous. His books on psychology and metaphysics were largely based on his own work. He also wrote a book on music, captioned Kitab al-Musiqa. He was a great expert in the art and science of music and invented several musical instruments, besides contributing to the knowledge of musical notes. It has been reported that he could play his instrument so well as to make people laugh or weep at will. In physics he demonstrated the existence of void.

Although many of his books have been lost, 117 are known, out of which 43 are on logic, 11 on metaphysics, 7 on ethics, 7 on political science, 17 on music, medicine and sociology, while 11 are commentaries. Some of his more famous books include the book Fusus al-Hikam, which remained a text book of philosophy for several centuries at various centres of learning and is still taught at some of the institutions in the East. The book Kitab al-lhsa al 'Ulum discusses classification and fundamental principles of science in a unique and useful manner. The book Ara Ahl al-Madina al- Fadila 'The Model City' is a significant early contribution to sociology snd political science.

Farabi exercised great influence on science and knowledge for several centuries. Unfortunately, the book Theology of Aristotle, as was available to him at that time was regarded by him as genuine, although later on it turned out to be the work of some Neoplatonic writer. Despite this, he was regarded the Second Teacher in philosophy for centuries and his work, aimed at synthesis of philosophy and sufism, paved the way for Ibn Sina's work.
Reply With Quote
  #12  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 9th century

9th century


721 - 900 - [chemistry] Chemical processes first described by Muslim chemists include: assation (or roasting), cocotion (or digestion), ceration, lavage, solution, mixture, and fixation. Arab chemists were the first to produce purified water, through water purification and distillation, used for water supply systems and for long journeys across deserts where the
supplies were uncertain. Petrol is also first produced by Muslim chemists

721 - 925 - [chemical technology] In his Secretum secretorum (Latinized title), Muhammad ibn Zakarīya Rāzi (Rhazes) described the following tools that were invented by him and his Muslim predecessors (Calid, Geber and Al-Kindi) for melting substances (li-tadhwib): hearth (kur), bellows (minfakh aw ziqq), crucible (bawtaqa), the but bar but (in Arabic) or botus barbatus (in Latin), tongs (masik aq kalbatan), scissors (miqta), hammer (mukassir), file (mibrad).

721 - 925 - [chemical technology] Muhammad ibn Zakarīya Rāzi described the following tools that were invented by him and his Muslim predecessors for the preparation of drugs (li-tadbir al-aqaqir): cucurbit and still with evacuation tube (qar aq anbiq dhu-khatm), receiving matras (qabila), blind still (without evacuation tube) (al-anbiq al-ama), aludel (al-uthal), goblets (qadah), flasks (qarura or quwarir), rosewater flasks (ma wariyya), cauldron (marjal aw tanjir), earthenware pots varnished on the inside with their lids (qudur aq tanjir), water bath or sand bath (qadr), oven (al-tannur in Arabic, athanor in Latin), small cylindirical oven for heating aludel (mustawqid), funnels, sieves, filters, etc.

721 - 925 - [chemical substances] Muhammad ibn Zakarīya Rāzi wrote that he and his Muslim predecessors (Calid, Geber and al-Kindi) invented the following derivative and artificial chemical substances: lead(II) oxide (PbO), red lead (Pb3O4), tin(II) oxide (Isfidaj), copper acetate (Zaniar), copper(II) oxide (CuO), lead sulfide, zinc oxide, bismuth oxide, antimony oxide, iron rust, iron acetate, Daws (a contituent of steel), cinnabar (HgS), arsenic trioxide (As2O3), alkali (al-Qili), sodium hydroxide (caustic soda), and Qalimiya (anything that separates from metals during their purification).

721 - 925 - [chemical substances] Muhammad ibn Zakarīya Rāzi classified the natural chemical substances that were discovered by him and his Muslim predecessors (mainly Calid, Geber, al-Kindi and al-Tamimi) as follows: Four spirits (mercury, sal ammoniac, arsenic, sulfur), eight fusible metals (gold, silver, copper, iron, tin, lead, mercury), rhirteen stones (marqashisha, maghnisiya, daws (a constituent of iron and steel), tutiya, lapis lazuli, malachite green, turquoise, hematite, arsenic oxide, lead sulfide, talq (mica and asbestos), gypsum, glass), six vitriols (black vitriol, alum, qalqand, qalqadis, qalqatar, suri), seven borates (borax, bread borax, natron, nitrate, sodium nitrate, potassium nitrate, sodium borate), and thirteen salts (lead(II) acetate (sweet), magnesium sulfate (bitter), andarani salt, tabarzad, potassium nitrate, naphthenate, black salt (Indian), salt of egg, alkali (al-qali), salt of urine, calcium hydroxide (slaked lime), salt of oak ashes, natron).

780 - 850 - [astronomical instruments] Muhammad ibn Mūsā al-Khwārizmī (Algorismi) invents the quadrant, mural instrument, sine quadran, horary quadrant, and alhidade.

789 - 857 - [cosmetics, cuisine, fashion, hygiene] Ziryab ("Blackbird") opens a beauty parlour or “cosmetology school” for women near Alcázar, Al-Andalus, where he introduces a "shorter, shaped cut, with bangs on the forehead and the ears uncovered." He also taught "the shaping of eyebrows and the use of chemical depilatories for removing body hair", and he introduced new perfumes and cosmetics.[52] Ziryab is also known to have invented an early toothpaste, which he popularized throughout Islamic Spain The exact ingredients of this toothpaste are not currently known, but it was reported to have been both "functional and pleasant to taste." He also invented under-arm deodorants and "new short hairstyles leaving the neck, ears and eyebrows free," as well as shaving for men. He also introduced the three-course meal, insisting that meals should be served in three separate courses consisting of soup, the main course, and dessert.

800 - [Medicine, psychiatry, psychology] The first psychiatric hospital and insane asylum in Egypt is built by Muslim physicians in Cairo.

800 - 868 - [biology, language, linguistics, zoology] 'Amr ibn Bahr al-Jahiz wrote a number of works on zoology, Arabic grammar, rhetoric, and lexicography. His most famous work is the Book of Animals, in which he was the first to discuss food chains, and was an early adherent of environmental determinism, arguing that the environment can determine the physical characteristics of the inhabitants of a certain community and that the origins of different human skin colors is the result of the environment. He was also the first to describe the struggle for existence[ and an early theory on evolution by natural selection.

800 - 873 - [technology] The Banū Mūsā brothers write the Book of Ingenious Devices, in which they describe their following inventions: valve, float valve, feedback controller, float chamber, automatic control, Automatic flute player, Programmable machine, Trick drinking vessels, gas mask, grab, clamshell grab, fail-safe system, hurricane lamp, self-feeding oil lamp, self-trimming oil lamp, mechanical musical instrument, and Hydropowered organ.

800s - [education] The first universities in the modern sense, namely institutions of higher education and research which issue academic degrees at all levels (bachelor, master and doctorate), were medieval madrasahs known as Jami'ah founded in the 9th century. The first universities in Europe were influenced in many ways by the madrasahs in Islamic Spain and the Emirate of Sicily at the time, and in the Middle East during the Crusades. The Islamic scholarly system of fatwa and ijma, meaning opinion and consensus respectively, formed the basis of the "scholarly system the West has practised in university scholarship from the Middle Ages down to the present day."

800s - [chemistry, petroleum] Oil fields first appear in Baku, Azerbaijan, and generate commercial activities and industry. These oil fields, where oil wells are dug to get the Naft (naphta, or crude petroleum), are described by geographer Masudi in the 10th century and by Marco Polo in the 13th century, who described the output of those wells as hundreds of shiploads.

800s - [education, legal science] Madrasahs were the first law schools, and it is likely that the "law schools known as Inns of Court in England" may have been derived from the madrasahs which taught Islamic law and jurisprudence.

800s - [legal science, education] The origins of the doctorate dates back to the ijazat attadris wa 'l-ifta' ("license to teach and issue legal opinions") in the medieval Islamic legal education system, which was equivalent to the Doctor of Laws qualification and was developed during the 9th century after the formation of the Madh'hab legal schools. To obtain a doctorate, a student "had to study in a guild school of law, usually four years for the basic undergraduate course" and ten or more years for a post-graduate course. The "doctorate was obtained after an oral examination to determine the originality of the candidate's theses," and to test the student's "ability to defend them against all objections, in disputations set up for the purpose" which were scholarly exercises practiced throughout the student's "career as a graduate student of law." After students completed their post-graduate education, they were awarded doctorates giving them the status of faqih (meaning "master of law"), mufti (meaning "professor of legal opinions") and mudarris (meaning "teacher"), which were later translated into Latin as magister, professor and doctor respectively.

800s - [ceramics, pottery] Another significant contribution of Islamic pottery was the development of stonepaste ceramics, originating from 9th century Iraq.

800s - [chemistry] The first oil fields and oil wells are created in Baku, Azerbaijan, in order to produce naphtha. Coffee was also invented by Khalid in Ethiopia.

800s - [milling technology] The water turbine is invented by Muslim engineers in the Islamic world.

800s - [astronomical instruments] Muslim astronomers invent the universal sundial and universal horary dial in Baghdad. The first navigational astrolabe was also invented in the medieval Islamic world, and employed the use of a polar projection system.

[COLOR="Red"]800 - 873 - [chemistry, environment, medicine, philosophy, physics] [/COLOR]Ibn Ishaq Al-Kindi (Latinized, Alkindus) contributed to early Islamic philosophy, Islamic physics, optics, Islamic medicine, Islamic mathematics, cryptography, and metallurgy. He worked at the House of Wisdom which was set up in 810. He introduces quantification into medicine in his De Gradibus, and he is the first to isolate ethanol (alcohol) as a pure compound.

810 - 888 - [aviation, glass, medicine, technology] Abbas Ibn Firnas "was a polymath: a physician, a rather bad poet, the first to make glass from stones (quartz), a student of music, and inventor of some sort of metronome." He contributed to the mechanics of flight, planetarium, and artificial crystals, and he made the earliest recorded attempt at controlled flight. He also designed a water clock, devised means of manufacturing colorless glass, developed a chain of rings that could be used to display the motions of the planets and stars, and developed a process for cutting rock crystal. Another one of his inventions was an artificial weather simulation room, in which spectators saw stars and clouds, and were astonished by artificial thunder and lightning due to mechanisms hidden in the basement. He also describes corrective lens and clear colourless high-purity glass, and invents silica glass and fused quartz glass.

813 - 833 - [library] A large number of ancient Greek, Sanskrit and Pahlavi texts on mathematics and astronomy are translated into Arabic at Baghdad's House of Wisdom (Bayt al-Hikma) during Al-Ma'mun's time.

813 - 833 - [education, medicine] The first medical schools are founded in Baghdad during Al-Ma'mun's time. These also became the first medical universities, where academic degrees and diplomas (ijazah) were issued to those students who were qualified to be practising doctors of medicine.

820 - [mathematics] Muhammad ibn Mūsā al-Khwārizmī (Persian name: خوارزمي, Arabicized name الخوارزمي al-Khwarizmi, Latinized name Algorithm) wrote the Hisab al-jabr w'al-muqabala (Calculus of resolution and juxtaposition), more briefly referred to as al-jabr, or algebra. "Algebra was a unifying theory which allowed rational numbers, irrational numbers, geometrical magnitudes, etc., to all be treated as "algebraic objects". It gave mathematics a whole new development path so much broader in concept to that which had existed before, and provided a vehicle for future development of the subject. Another important aspect of the introduction of algebraic ideas was that it allowed mathematics to be applied to itself in a way which had not happened before.As Rashed writes: "Al-Khwarizmi's successors undertook a systematic application of arithmetic to algebra, algebra to arithmetic, both to trigonometry, algebra to the Euclidean theory of numbers, algebra to geometry, and geometry to algebra. This was how the creation of polynomial algebra, combinatorial analysis, numerical analysis, the numerical solution of equations, the new elementary theory of numbers, and the geometric construction of equations arose."

820 - [mathematics] Al-Mahani (full name Abu Abdollah Muhammad ibn Isa Mahani - in Arabic Al-Mahani). Conceived the idea of reducing geometrical problems such as duplicating the cube to problems in algebra.

828 - 896 [agriculture, astronomy, biology, botany, Earth sciences, meteorology] Al-Dinawari, the founder of Arabic botany, writes the Book of Plants, which describes at least 637 plants; discusses plant evolution from its birth to its death, describing the phases of plant growth and the production of flowers and fruit. He also deals with the applications of Islamic astronomy and meteorology to agriculture: he describes the astronomical and meteorological character of the sky, the planets and constellations, the sun and moon, the lunar phases indicating seasons and rain, the anwa (heavenly bodies of rain), and atmospheric phenomena such as winds, thunder, lightning, snow, floods, valleys, rivers, lakes, wells and other sources of water. He also deals with the Earth sciences in the context of agriculture: he considers the Earth, stone and sands, and describes different types of ground, indicating which types are more convenient for plants and the qualities and properties of good ground.

836 - 901 [anatomy; astronomy; mathematics; mechanics] Thabit Ibn Qurra (Latinized, Thebit) studied at Baghdad's House of Wisdom under the Banu Musa brothers. He made many contributions to mathematics, particularly in geometry and number theory. He discovered the theorem by which pairs of amicable numbers can be found; i.e., two numbers such that each is the sum of the proper divisors of the other. Later, al-Baghdadi (b. 980) and al-Haytham (born 965) developed variants of the theorem.

838 - 870 - Tabari (full name: Ali ibn Sahl Rabban Al-Tabari). Medicine, Mathematics, Calligraphy, Literature.

mid-800s - [chemistry] Al-Kindi writes on the distillation of wine as that of rose water and gives 107 recipes for perfumes, in his book Kitab Kimia al-`otoor wa al-tas`eedat (Book of the chemistry of perfumes and distillations).

[B]850/858 - 929 - [astronomy - mathematics][/B] Al-Battani (Albatenius) writes works on astronomy and trigonometry. He is mentioned twenty-three times in Copernicus' work De revolutionibus orbium celestium (On the Revolution of Heavenly Spheres).

850 - 930 [mathematics] born Abu Kamil of Egypt (full name, Abu Kamil Shuja ibn Aslam ibn Muhammad ibn Shuja) Forms an important link in the development of algebra between al-Khwarizmi and al-Karaji. Despite not using symbols, but writing powers of x in words, he had begun to understand what we would write in symbols as .

852 - [aviation, flight] Abbas Ibn Firnas (Armen Firman) made the first successful parachute fall using a huge wing-like cloak to break his fall, near Córdoba, Spain.

859 - [education] The University of Al Karaouine in Fes, Morocco, is recognized by the Guinness Book of World Records as the oldest academic degree-granting university in the world with its founding in 859 by the princess Fatima al-Fihri.

ca. 860 - [astronomy, engineering] Al-Farghani (Algraganus) contributes to Islamic astronomy and civil engineering.

864 - 930 - [chemistry, medicine] Al-Razi (Rhazes) wrote on Naft (naphta or petroleum) and its distillates in his book Kitab sirr al-asrar (Book of the secret of secrets). When choosing a site to build Baghdad's hospital, he hung pieces of fresh meat in different parts of the city. The location where the meat took the longest to rot was the one he chose for building the hospital. He advocated that patients not be told their real condition so that fear or despair do not affect the healing process. He wrote the earliest descriptions on alkali, caustic soda, glycerine, and he first described the modern formula for soap and invented the soap bar.[78] He also Gave descriptions of equipment, processes and methods in his book Kitab al-Asrar (Book of Secrets) in 925, and he was the first to clearly describe and differentiate between measles and smallpox. He was also a pioneer of chemotherapy and antiseptics.

870 - 950 - Al-Farabi (Al-Pharabius) contributes to early Islamic philosophy, early Muslim sociology, logic in Islamic philosophy, political science, and musical science

875 - [aviation, flight] Abbas Ibn Firnas made the first recorded attempt at controlled flight employing a glider

889 - [navigation] Khashkhash Ibn Saeed Ibn Aswad made the earliest known attempt to cross the Atlantic Ocean. According to Abu al-Hasan 'Alī al-Mas'ūdī's The fields of gold and the mines of jewels, Khashkhash Ibn Saeed Ibn Aswad, from Delba (Palos de la Frontera) crossed the Atlantic Ocean in 889 and returned with a shipload of valuable treasures (see Pre-Columbian Islamic contact theories).

Last edited by Shooting Star; Saturday, June 30, 2012 at 03:18 AM.
Reply With Quote
  #13  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abul Hasan Ali Al-masu'di (died 957 C.e.)

ABUL HASAN ALI AL-MASU'DI
(DIED 957 C.E.)


Abul Hasan Ali Ibn Husain Ibn Ali Al-Masu'di was a descendant of Abdallah Ibn Masu'd, a companion of the Holy Prophet (peace be upon him). An expert geographer, a physicist and historian, Masu'di was born in the last decade of the 9th century C.E., his exact date of birth being unknown. He was a Mutazilite Arab, who explored distant lands and died at Cairo, in 957 C.E.

He travelled to Fars in 915 C.E. and, after staying for one year in Istikhar, he proceeded via Baghdad to India, where he visited Multan and Mansoora before returning to Fars. From there he travelled to Kirman and then again to India. Mansoora in those days was a city of great renown and was the capital of the Muslim state of Sind. Around it, there were many settlements/townships of new converts to Islam. In 918 C.E., Masu'di travelled to Gujrat, where more than 10,000 Arab Muslims had settled in the sea-port of Chamoor. He also travelled to Deccan, Ceylon, Indo-China and China, and proceeded via Madagascar, Zanjibar and Oman to Basra.

At Basra he completed his book Muruj-al-Thahab, in which he has described in a most absorbing manner his experience of various countries, peoples and climates. He gives accounts of his personal contacts with the Jews, Iranians, Indians and Christians. From Basra he moved to Syria and from there to Cairo, where he wrote his second extensive book Muruj al-Zaman in thirty volumes. In this book he has described in detail the geography and history of the countries that he had visited. His first book was completed in 947 C.E. He also prepared a supplement, called Kitab al-Ausat, in which he has compiled historical events chronologically. In 957 C.E., the year of his death, he completed his last book Kitab al-Tanbih wa al-Ishraf, in which he has given a summary of his earlier book as well as an errata.

Masu'di is referred to as the Herodotus and Pliny of the Arabs. By presenting a critical account of historical events, he initiated a change in the art of historical writing, introducing the elements of analysis, reflection and criticism, which was later on further improved by Ibn Khaldun. In particular, in al-Tanbeeh he makes a systematic study of history against a perspective of geography, sociology, anthropology and ecology. Masu'di had a deep insight into the causes of rise and fall of nations.

With his scientific and analytical approach he has given an account of the causes of the earthquake of 955 C.E., as well as the discussions of the water of the Red Sea and other problems in the earth sciences. He is the first author to make mention of windmills, which were invented by the Muslims of Sijistan.

Masu'di also made important contributions to music and other fields of science. In his book Muruj al-Thahab he provides important information on early Arab music as well as music of other countries.

His book Muruj al-Thahab wa al-Ma'adin al-Jawahir (Meadows of Gold and Mines of Precious Stones) has been held as 'remarkable' because of the 'catholicity of its author, who neglected no source of information and of his truly scientific curiosity'. As mentioned above, it was followed by his treatise Muruj al-Zaman. In addition to writing a supplement Kitab al-Ausat, he completed Kitab al-Tanbih wa al-Ishraf towards the end of his career. It is, however, unfortunate that, out of his 34 books as mentioned by himself in Al-Tanbih, only three have survived, in addition to Al-Tanbih itself.

Some doubts have been expressed about some claims related to his extensive travelling e.g., upto China and Madagascar, but the correct situation cannot be assessed due to the loss of his several books. Whatever he has recorded was with a scientific approach and constituted an important contribution to geography, history and earth sciences. It is interesting to note that he was one of the early scientists who propounded several aspects of evolution viz., from minerals to plant, plant to animal and animal to man. His researches and views extensively influenced the sciences of historiography, geography and earth sciences for several countries.
Reply With Quote
  #14  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abu Al-qasim Al-zahrawi (936-1013 C.e.)

ABU AL-QASIM AL-ZAHRAWI
(936-1013 C.E.)


Abul Qasim Khalaf ibn al-Abbas al-Zahrawi (known in the west as Abulcasis) was born in 936 C.E. in Zahra in the neighbourhood of Cordova. He became one of the most renowned surgeons of the Muslim era and was physician to King Al-Hakam-II of Spain. After a long medical career, rich with significant original contribution, he died in 1013 C.E.

He is best known for his early and original breakthroughs in surgery as well as for his famous Medical Ecyclopaedia called Al-Tasrif, which is composed of thirty volumes covering different aspects of medical science. The more important part of this series comprises three books on surgery, which describe in detail various aspects of surgical treatment as based on the operations performed by him, including cauterization, removal of stone from the bladder, dissection of animals, midwifery, stypics, and surgery of eye, ear and throat. He perfected several delicate operations, including removal of the dead foetus and amputation.

Al-Tasrif was first translated by Gherard of Cremona into Latin in the Middle Ages. It was followed by several other editors in Europe. The book contains numerous diagrams and illustrations of surgical instruments, in use or developed by him, and comprised a part of the medical curriculum in European countries for many centuries. Contrary to the view that the Muslims fought shy of surgery, Al-Zahrawi's Al-Tasrif provided a monumental collection for this branch of applied science.

Al-Zahrawi was the inventor of several surgical instruments, of which three are notable: (i) an instrument for internal examina- tion of the ear, (ii) an instrument for internal inspection of the urethra, and (iii) and instrument for applying or removing foreign bodies from the throat. He specialized in curing disease by cauterization and applied the technique to as many as 50 different operations.

In his book Al-Tasrif, Al-Zahrawi has also discussed the preparation of various medicines, in addition to a comprehensive account of surgical treatment in specialized branches, whose modern counterparts are E.N.T., Ophthalmology, etc. In connection with the preparation of medicines, he has also described in detail the application of such techniques as sublimation and decantation. Al-Zahrawi was also an expert in dentistry, and his book contains sketches of various instruments used thereof, in addition to a description of various important dental operations. He discussed the problem of non-aligned or deformed teeth and how to rectify these defects. He developed the technique of preparing artificial teeth and of replacement of defective teeth by these. In medicine, he was the first to describe in detail the unusual disease, haemophelia.

There can be no doubt that Al-Zahrawi influenced the field of medicine and surgery very deeply and the principles laid down by him were recognized as authentic in medical science, especially surgery, and these continued to influence the medical world for five centuries. According to Dr. Cambell (History of Arab Medicine), his principles of medical science surpassed those of Galen in the European medical curriculum.
Reply With Quote
  #15  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abul Wafa Muhammad Al-buzjani (940-997 C.e.)

ABUL WAFA MUHAMMAD AL-BUZJANI
(940-997 C.E.)


Abul Wafa Muhammad Ibn Muhammad Ibn Yahya Ibn Ismail al-Buzjani was born in Buzjan, Nishapur in 940 C.E. He flourished as a great mathematician and astronomer at Baghdad and died in 997/998 C.E. He learnt mathematics in Baghdad. In 959 C.E. he migrated to Iraq and lived there till his death.

Abul Wafa's main contribution lies in several branches of mathematics, especially geometry and trigonometry. In geometry his contribution comprises solution of geometrical problems with opening of the compass; construction of a square equivalent to other squares; regular polyhedra; construction of regular hectagon taking for its side half the side of the equilateral triangle inscribed in the same circle; constructions of parabola by points and geometrical solution of the equations:

x4 = a and x4 + ax3 = b

Abul Wafa's contribution to the development of trigonometry was extensive. He was the first to show the generality of the sine theorem relative to spherical triangles. He developed a new method of constructing sine tables, the value of sin 30' being correct to the eighth decimal place. He also developed relations for sine (a+b) and the formula:

2 sin2 (a/2) = 1 - cos a , and
sin a = 2 sin (a/2) cos (a/2)

In addition, he made a special study of the tangent and calculated a table of tangents. He introduced the secant and cosecant for the first time, knew the relations between the trigonometric lines, which are now used to define them, and undertook extensive studies on conics.

Apart from being a mathematician, Abul Wafa also contributed to astronomy. In this field he discussed different movernents of the moon, and discovered 'variation'. He was also one of the last Arabic translators and commentators of Greek works.

He wrote a large number of books on mathematics and other subjects, most of which have been lost or exist in modified forms. His contribution includes Kitab 'Ilm al-Hisab, a practical book of arithmetic, al-Kitab al-Kamil (the Complete Book), Kitab al-Handsa (Applied Geometry). Apart from this, he wrote rich commentaries on Euclid, Diophantos and al-Khawarizmi, but all of these have been lost. His books now extant include Kitab 'Ilm al-Hisab, Kitab al- Handsa and Kitab al-Kamil.

His astronomical knowledge on the movements of the moon has been criticized in that, in the case of 'variation' the third inequality of the moon as he discussed was the second part of the 'evection'. But, according to Sedat, what he discovered was the same that was discovered by Tycho Brache six centuries later. Nonetheless, his contribution to trigonometry was extremely significant in that he developed the knowledge on the tangent and introduced the secant and cosecant for the first time; in fact a sizeable part of today's trigonometry can be traced back to him.
Reply With Quote
  #16  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abu Ali Hasan Ibn Al-haitham (965-1040 C.e.)

ABU ALI HASAN IBN AL-HAITHAM
(965-1040 C.E.)


Abu Ali Hasan Ibn al-Haitham was one of the most eminent physicists, whose contributions to optics and the scientific methods are outstanding. Known in the West as Alhazen, Ibn al-Haitham was born in 965 C.E. in Basrah, and was educated in Basrah and Baghdad. Thereafter, he went to Egypt, where he was asked to find ways of controlling the flood of the Nile. Being unsuccessful in this, he feigned madness until the death of Caliph al-Hakim. He also travelled to Spain and, during this period, he had ample time for his scientific pursuits, which included optics, mathematics, physics, medicine and development of scientific methods on each of which he has left several outstanding books.

He made a thorough examination of the passage of light through various media and discovered the laws of refraction. He also carried out the first experiments on the dispersion of light into its constituent colours. His book Kitab-al-Manadhir was translated into Latin in the Middle Ages, as also his book dealing with the colours of sunset. He dealt at length with the theory of various physical phenomena like shadows, eclipses, the rainbow, and speculated on the physical nature of light. He is the first to describe accurately the various parts of the eye and give a scientific explanation of the process of vision. He also attempted to explain binocular vision, and gave a correct explanation of the apparent increase in size of the sun and the moon when near the horizon. He is known for the earliest use of the camera obscura. He contradicted Ptolemy's and Euclid's theory of vision that objects are seen by rays of light emanating from the eyes; according to him the rays originate in the object of vision and not in the eye. Through these extensive researches on optics, he has been considered as the father of modern Optics.

The Latin translation of his main work, Kitab-al-Manadhir, exerted a great influence upon Western science e.g. on the work of Roger Bacon and Kepler. It brought about a great progress in experimental methods. His research in catoptrics centred on spherical and parabolic mirrors and spherical aberration. He made the important observation that the ratio between the angle of incidence and refraction does not remain constant and investigated the magnifying power of a lens. His catoptrics contain the important problem known as Alhazen's problem. It comprises drawing lines from two points in the plane of a circle meeting at a point on the circumference and making equal angles with the norrnal at that point. This leads to an equation of the fourth degree.

In his book Mizan al-Hikmah Ibn al-Haitham has discussed the density of the atmosphere and developed a relation between it and the height. He also studied atmospheric refraction. He discovered that the twilight only ceases or begins when the sun is 19° below the horizon and attempted to measure the height of the atmosphere on that basis. He has also discussed the theories of attraction between masses, and it seems that he was aware of the magnitude of acceleration due to gravity.

His contribution to mathematics and physics was extensive. In mathematics, he developed analytical geometry by establishing linkage between algebra and geometry. He studied the mechanics of motion of a body and was the first to maintain that a body moves perpetually unless an external force stops it or changes its direction of motion. This would seem equivalent to the first law of motion.

The list of his books runs to 200 or so, very few of which have survived. Even his monumental treatise on optics survived through its Latin translation. During the Middle Ages his books on cosmology were translated into Latin, Hebrew and other languages. He has also written on the subject of evolution a book that deserves serious attention even today.

In his writing, one can see a clear development of the scientific methods as developed and applied by the Muslims and comprising the systematic observation of physical phenomena and their linking together into a scientific theory. This was a major breakthrough in scientific methodology, as distinct from guess and gesture, and placed scientific pursuits on a sound foundation comprising systematic relationship between observation, hypothesis and verification.

Ibn al-Haitham's influence on physical sciences in general, and optics in particular, has been held in high esteem and, in fact, it ushered in a new era in optical research, both in theory and practice.
Reply With Quote
  #17  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abu Al-hasan Al-mawardi (972-1058 C.e.)

ABU AL-HASAN AL-MAWARDI
(972-1058 C.E.)


Abu al-Hasan Ali Ibn Muhammad Ibn Habib al-Mawardi was born at Basrah in 972 C.E. He was educated at first in Basrah where, after completion of his basic education, he learned Fiqh (Islamic jurisprudence) from the jurist Abu al-Wahid al-Simari. He then went to Baghdad for advanced studies under Sheikh Abd al-Hamid and Abdallah al-Baqi. His proficiency in jurisprudence Ethics, Political science and literature proved useful in securing a respectable career for him. After his initial appointment as Qadi (Judge), he was gradually promoted to higher offices, till he became the Chief Justice at Baghdad. The Abbasid Caliph al-Qaim bi Amr Allah appointed him as his roving ambassador and sent him to a number of countries as the head of special missions. In this capacity he played a key role in establishing harmonious relations between the declining Abbasid Caliphate and the rising powers of Buwahids and Seljukes. He was favoured with rich gifts and tributes by most Sultans of the time. He was still in Baghdad when it was taken over by Buwahids. Al-Mawardi died in 1058 C.E.

Al-Mawardi was a great jurist, mohaddith, sociologist and an expert in Political Science. He was a jurist in the school of Fiqh and his book Al-Hawi on the principles of jurisprudence is held in high repute.

His contribution in political science and sociology comprises a number of monumental books, the most famous of which are Kitab al-Ahkam al-Sultania, Qanun al-Wazarah, and Kitab Nasihat al-Mulk. The books discuss the principles of political science, with special reference to the functions and duties of the caliphs, the chief minister, other ministers, relationships between various elements of public and govemment and measures to strengthen the government and ensure victory in war. Two of these books, al-Ahkam al-Sultania and Qanun al-Wazarah have been published and also translated into various languages. He is considered as being the author/supporter of the 'Doctrine of Necessity' in political science. He was thus in favour of a strong caliphate and discouraged unlimited powers delegated to the Governors, which tended to create chaos. On the other hand, he has laid down clear principles for election of the caliph and qualities of the voters, chief among which are attainment of a degree of intellectual level and purity of character.

In ethics, he wrote Kitab Aadab al-Dunya wa al-Din, which became a widely popular book on the subject and is still read in some Islamic countries.

Al-Mawardi has been considered as one of the most famous thinkers in political science in the middle ages. His original work influenced the development of this science, together with the science of sociology, which was further developed later on by Ibn Khaldun.
Reply With Quote
  #18  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Abu Raihan Al-biruni (973-1048 C.e.)

ABU RAIHAN AL-BIRUNI
(973-1048 C.E.)


Abu Raihan Mohammad Ibn Ahmad al-Biruni was one of the well-known figures associated with the court of King Mahmood Ghaznawi, who was one of the famous Muslim kings of the 11th century C.E. Al-Biruni was a versatile scholar and scientist who had equal facility in physics, metaphysics, mathematics, geography and history. Born in the city of Kheva near "Ural" in 973 C.E., he was a contemporary of the well-known physician Ibn Sina. At an early age, the fame of his scholarship went around and when Sultan Mahmood Ghaznawi conquered his homeland, he took al-Biruni along with him in his journeys to India several times and thus he had the opportunity to travel all over India during a period of 20 years. He learnt Hindu philosophy, mathematics, geography and religion from thre Pandits to whom he taught Greek and Arabic science and philosophy. He died in 1048 C.E. at the age of 75, after having spent 40 years in thus gathering knowledge and making his own original contributions to it.

He recorded observations of his travels through India in his well-known book Kitab al-Hind which gives a graphic account of the historical and social conditions of the sub-continent. At the end of this book he makes a mention of having translated two Sanskrit books into Arabic, one called Sakaya, which deals with the creation of things and their types, and the second, Patanjal dealing with what happens after the spirit leaves the body. His descriptions of India were so complete that even the Aein-i-Akbari written by Abu-al- Fadal during the reign of Akbar, 600 years later, owes a great deal to al-Biruni's book. He observed that the Indus valley must be considered as an ancient sea basin filled up with alluvials.

On his return from India, al-Biruni wrote his famous book Qanun-i Masoodi (al-Qanun al-Masudi, fi al-Hai'a wa al-Nujum), which he dedicated to Sultan Masood. The book discusses several theories of astronomy, trigonometry, solar, lunar, and planetary motions and relative topics. In another well-known book al-Athar al-Baqia, he has attempted a connected account of ancient history of nations and the related geographical knowledge. In this book, he has discussed the rotation of the earth and has given correct values of latitudes and longitudes of various places. He has also made considerable contribution to several aspects of physical and economic geography in this book.

His other scientific contributions include the accurate determination of the densities of 18 different stones. He also wrote the Kitab-al-Saidana, which is an extensive materia medica that combines the then existing Arabic knowledge on the subject with the Indian medicine. His book the Kitab-al-Jamahir deals with the properties of various precious stones. He was also an astrologer and is reputed to have astonished people by the accuracy of his predictions. He gave a clear account of Hindu numerals, elaborating the principle of position. Summation of a geometric progression appropos of the chess game led to the number:

1616° - 1 = 18,446,744,073,709,551,619.

He developed a method for trisection of angle and other problems which cannot be solved with a ruler and a compass alone. Al-Biruni discussed, centuries before the rest of the world, the question whether the earth rotates around its axis or not. He was the first to undertake experiments related to astronomical phenomena. His scientific method, taken together with that of other Muslim scientists, such as Ibn al-Haitham, laid down the early foundation of modern science. He ascertained that as compared with the speed of sound the speed of light is immense. He explained the working of natural springs and artesian wells by the hydrostatic principle of communicating vessels. His investigations included description of various monstrosities, including that known as "Siamese" twins. He observed that flowers have 3,4,5,6, or 18 petals, but never 7 or 9.

He wrote a number of books and treatises. Apart from Kitab-al- Hind (History and Geography of India), al-Qanun al-Masudi (Astro- nomy, Trigonometry), al-Athar al-Baqia (Ancient History and Geography), Kitab al-Saidana (Materia Medica) and Kitab al-Jawahir (Precious Stones) as mentioned above, his book al-Tafhim-li-Awail Sina'at al-Tanjim gives a summary of mathematics and astronomy.

He has been considered as one of the very greatest scientists of Islam, and, all considered, one of the greatest of all times. His critical spirit, love of truth, and scientific approach were combined with a sense of toleration. His enthusiasm for knowledge may be judged from his claim that the phrase Allah is Omniscient does not justify ignorance.
Reply With Quote
  #19  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Ibn Sina (980-1037 C.e.)

IBN SINA
(980-1037 C.E.)

Abu Ali al-Hussain Ibn Abdallah Ibn Sina was born in 980 C.E. at Afshana near Bukhara. The young Bu Ali received his early education in Bukhara, and by the age of ten had become well versed in the study of the Qur'an and various sciences. He started studying philosophy by reading various Greek, Muslim and other books on this subject and learnt logic and some other subjects from Abu Abdallah Natili, a famous philosopher of the time. While still young, he attained such a degree of expertise in medicine that his renown spread far and wide. At the age of 17, he was fortunate in curing Nooh Ibn Mansoor, the King of Bukhhara, of an illness in which all the well-known physicians had given up hope. On his recovery, the King wished to reward him, but the young physician only desired permission to use his uniquely stocked library.

On his father's death, Bu Ali left Bukhara and travelled to Jurjan where Khawarizm Shah welcomed him. There, he met his famous contemporary Abu Raihan al-Biruni. Later he moved to Ray and then to Hamadan, where he wrote his famous book Al-Qanun fi al-Tibb. Here he treated Shams al-Daulah, the King of Hamadan, for severe colic. From Hamadan, he moved to Isphahan, where he completed many of his monumental writings. Nevertheless, he continued travelling and the excessive mental exertion as well as political turmoil spoilt his health. Finally, he returned to Hamadan where he died in 1037 C.E.

He was the most famous physician, philosopher, encyclopaedist, mathematician and astronomer of his time. His major contribution to medical science was his famous book al-Qanun, known as the "Canon" in the West. The Qanun fi al-Tibb is an immense encyclo- paedia of medicine extending over a million words. It surveyed the entire medical knowledge available from ancient and Muslim sources. Due to its systematic approach, "formal perfection as well as its intrinsic value, the Qanun superseded Razi's Hawi, Ali Ibn Abbas's Maliki, and even the works of Galen, and remained supreme for six centuries". In addition to bringing together the then available knowledge, the book is rich with the author's original eontribution. His important original contribution includes such advances as recognition of the contagious nature of phthisis and tuberculosis; distribution of diseases by water and soil, and interaction between psychology and health. In addition to describing pharmacological methods, the book described 760 drugs and became the most authentic materia medica of the era. He was also the first to describe meningitis and made rich contributions to anatomy, gynaecology and child health.

His philosophical encyclopaedia Kitab al-Shifa was a monu- mental work, embodying a vast field of knowledge from philosophy to science. He classified the entire field as follows: theoretical knowledge: physics, mathematics and metaphysics; and practical knowledge: ethics, economics and politics. His philosophy synthesises Aristotelian tradition, Neoplatonic influences and Muslim theology.

Ibn Sina also contributed to mathematics, physics, music and other fields. He explained the "casting out of nines" and its applica- tion to the verification of squares and cubes. He made several astronomical observations, and devised a contrivance similar to the vernier, to increase the precision of instrumental readings. In physics, his contribution comprised the study of different forms of energy, heat, light and mechanical, and such concepts as force, vacuum and infinity. He made the important observation that if the perception of light is due to the emission of some sort of particles by the luminous source, the speed of light must be finite. He propounded an interconnection between time and motion, and also made investigations on specific gravity and used an air thermo- meter.

In the field of music, his contribution was an improvement over Farabi's work and was far ahead of knowledge prevailing else- where on the subject. Doubling with the fourth and fifth was a 'great' step towards the harmonic system and doubling with the third seems to have also been allowed. Ibn Sina observed that in the series of consonances represented by (n + 1)/n, the ear is unable to distinguish them when n = 45. In the field of chemistry, he did not believe in the possibility of chemical transmutation because, in his opinion, the metals differed in a fundamental sense. These views were radically opposed to those prevailing at the time. His treatise on minerals was one of the "main" sources of geology of the Christian encyclopaedists of the thirteenth century. Besides Shifa his well-known treatises in philosophy are al-Najat and Isharat.
Reply With Quote
  #20  
Old Saturday, August 02, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 10th century

10th century

800 - 1000 [technology] The first wind powered gristmills and sugar refineries appear in Afghanistan, Pakistan and Iran. The first geared gristmills and the on/off switch are also invented by Muslim engineers. Other inventions from the Islamic world include the paned window, street lamp, Mercury escapement mechanism, bridge dam and Milling dam in Iran, diversion dam in Iraq, and litter collection, waste containers and Waste disposal in Al-Andalus.

800 - 1000 [drinking industry] Soft drinks, sherbets and syrup are invented in the Islamic world.

800 - 1000 The first public library and lending library are built in the Islamic world. The library catalog is also invented in Islamic libraries.

800 - 1300 [environmental science] The earliest known treatises dealing with environmentalism and environmental science, especially pollution, were Arabic medical treatises written by al-Kindi, Qusta ibn Luqa, al-Razi, Ibn Al-Jazzar, al-Tamimi, al-Masihi, Avicenna, Ali ibn Ridwan, Ibn Jumay, Isaac Israeli ben Solomon, Abd-el-latif, Ibn al-Quff, and Ibn al-Nafis. Their works covered a number of subjects related to pollution such as air pollution, water pollution, soil contamination, municipal solid waste mishandling, and environmental impact assessments of certain localities. Cordoba, al-Andalus also had the first waste containers and waste disposal facilities for litter collection.[

800 - 1300 [medicine, urology] In sexual health, Muslim physicians and pharmacists identified the issues of sexual dysfunction and erectile dysfunction, and they were the first to prescribe medication for the treatment of these problems. They developed several methods of therapy for this issue, including the single drug method where a drug is prescribed, and a "combination method of either a drug or food." These drugs were also occasionally used for recreational drug use to improve male sexuality in general by those who did not suffer from sexual dysfunctions. Most of these drugs were oral medication, though a few patients were also treated through topical and transurethral means. Sexual dysfunctions were being treated with tested drugs in the Islamic world since the 9th century until the 16th century by a number of Muslim physicians and pharmacists, including Ibn Al-Jazzar, Al-Razi, Thabit bin Qurra, Avicenna (The Canon of Medicine), Averroes, Ibn al-Baitar, and Ibn al-Nafis (The Comprehensive Book on Medicine).

865 - 925 [chemistry, medicine] Muhammad ibn Zakarīya Rāzi (Rhazes), in his Doubts about Galen, was the first to prove both Aristotle's theory of classical elements and Galen's theory of humorism wrong using an experimental method. He carried out an experiment which would upset these theories by inserting a liquid with a different temperature into a body resulting in an increase or decrease of bodily heat, which resembled the temperature of that particular fluid. Al-Razi noted particularly that a warm drink would heat up the body to a degree much higher than its own natural temperature, thus the drink would trigger a response from the body, rather than transferring only its own warmth or coldness to it. Al-Razi's chemical experiments further suggested other qualities of matter, such as "oiliness" and "sulfurousness", or inflammability and salinity, which were not readily explained by the traditional fire, water, earth and air division of elements.

858 - 1048 [astronomical instruments] The first reference to an "observation tube" is found in the work of Al-Battani, and the first exact description of the observation tube was given by al-Biruni, in a section of his work that is "dedicated to verifying the presence of the new cresent on the horizon." Though these early observation tubes did not have lenses, they "enabled an observer to focus on a part of the sky by eliminating light inteference." These observation tubes were later adopted in Latin-speaking Europe, where they influenced the development of the telescope.

865 - 925 [chemical technology] Kerosene was produced from the distillation of petroleum and was first described by al-Razi (Rhazes) in Baghdad. In his Kitab al-Asrar (Book of Secrets), he described two methods for the production of kerosene. One method involved using clay as an absorbent, while the other method involved using ammonium chloride (sal ammoniac). Al-Razi also described the first kerosene lamps (naffatah) used for heating and lighting in his Kitab al-Asrar (Book of Secrets). These were used in the oil lamp industry.

865 - 925 [alchemy] Muhammad ibn Zakarīya Rāzi writes that the only vegetable substance used by Muslim alchemists are the ashes of the Ushnan plant, from which they produced alkali metals and alkali salts. Razi also lists ten animal substances that were used by him and his contemporary alchemists: hair, skulls, brains, bile, blood, milk, urine, eggs, nacre (mother of pearl) and horn. He writes that hair, brains, bile, eggs, skulls and blood were used to prepare sal ammoniac.

865 - 925 [chemical processes] Muhammad ibn Zakarīya Rāzi first described the following chemical processes: calcination (al-tashwiya).solution (al-tahlil), sublimation (al-tas'id), amalgamation (al-talghim), ceration (al-tashmi), and a method of converting a substance into a thick paste or fusible solid.

900s - [mathematics, accounting] By this century, three systems of counting are used in the Arab world. Finger-reckoning arithmetic, with numerals written entirely in words, used by the business community; the sexagesimal system, a remnant originating with the Babylonians, with numerals denoted by letters of the arabic alphabet and used by Arab mathematicians in astronomical work; and the Hindu-Arabic numeral system, which was used with various sets of symbols. Its arithmetic at first required the use of a dust board (a sort of handheld blackboard) because "the methods required moving the numbers around in the calculation and rubbing some out as the calculation proceeded." Al-Uqlidisi (born 920) modified these methods for pen and paper use. Eventually the advances enabled by the decimal system led to its standard use throughout the region and the world.

900s - [technology] The first milling factory is built in Baghdad.

900s - [astronomy, mathematics, technology] The cartographic grid is invented in Baghdad, and graph paper is also invented in the Islamic world.

900s - Muslim astronomers also invent the almucantar quadrant, navigational astrolabe, vertical sundial, and polar sundial.

900s - [chemistry] Shaving soap is invented by Arabic chemists.

900s - [medicine] Alcohol is first employed for medical uses by Arabic physicians.

800 - 1000 - Muslim engineers invented a variety of surveying instruments for accurate levelling, including: a wooden board with a plumb line and two hooks, an equilateral triangle with a plumb line and two hooks, and a "reed level". They also invented a rotating alhidade used for accurate alignment, and a surveying astrolabe used for alignment, measuring angles, triangulation, finding the width of a river, and the distance between two points separated by an impassable obstruction

903 - 986 - [astronomical instruments] Abd al-Rahman al-Sufi (Latinized name, Azophi) first described over 1,000 different uses of an astrolabe, in areas as diverse as astronomy, astrology, horoscopes, navigation, surveying, timekeeping, Qibla, Salah prayer, etc.

964 - [astronomy] Abd al-Rahman al-Sufi writes the Book of Fixed Stars, a star catalogue thoroughly illustrated with observations and descriptions of the stars, their positions, their apparent magnitudes and their colour. He identified the Large Magellanic Cloud, which is visible from Yemen, though not from Isfahan; it was not seen by Europeans until Magellan's voyage in the 16th century. He also made earliest recorded observation of the Andromeda Galaxy in 964 AD; describing it as a "small cloud". He also cataloged the Omicron Velorum star cluster as a "nebulous star", and an additional "nebulous object" in Vulpecula, a cluster now variously known as Al Sufi's Cluster, the "Coathanger asterism", Brocchi's Cluster or Collinder 399.

909 - 950 [ceramics, pottery] The Hispano-Moresque style of Islamic pottery emerged in Andalusia under the Fatimids.

920 [mathematics] Born al-Uqlidisi. Modified arithmetic methods for the Indian numeral system to make it possible for pen and paper use. Until then, doing calculations with the Indian numerals necessitated the use of a dust board as noted earlier.

927 - 928 - [astronomical instruments] The earliest surviving example of an astrolabe is dated 315 AH in the Islamic calendar.

936 - 1013 [medicine] Al-Zahrawi (Latinized name, Albucasis) Surgery, Medicine. Called the "Father of Modern Surgery."

940 - 997 [astronomy; mathematics] Muhammad Al-Buzjani. Mathematics, Astronomy, Geometry, Trigonometry.

940 [mathematics] Born Abu'l-Wafa al-Buzjani. Wrote several treatises using the finger-counting system of arithmetic, and was also an expert on the Indian numerals system. About the Indian system he wrote: "[it] did not find application in business circles and among the population of the Eastern Caliphate for a long time." Using the Indian numeral system, abu'l Wafa was able to extract roots.

945 - 1000 [cuisine] Some of the earliest restaurants came into existence throught the medieval Islamic world at this time. The Islamic world had "restaurants where one could purchase all sorts of prepared dishes." These restaurants were mentioned by Al-Muqaddasi (born 945) in the late 10th century.

953 [mathematics] Born al-Karaji of Karaj and Baghdad (full name, Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji or al-Karkhi). Believed to be the "first person to completely free algebra from geometrical operations and to replace them with the arithmetical type of operations which are at the core of algebra today. He was first to define the monomials x, x2, x3, ... and 1 / x, 1 / x2, 1 / x3, ... and to give rules for products of any two of these. He started a school of algebra which flourished for several hundreds of years". Discovered the binomial theorem for integer exponents. This "was a major factor in the development of numerical analysis based on the decimal system."

953 [technology] The earliest historical record of a reservoir fountain pen dates back to 953, when Ma'ād al-Mu'izz, the caliph of Egypt, demanded a pen which would not stain his hands or clothes, and was provided with a pen which held ink in a reservoir and delivered it to the nib via gravity and capillary action, as recorded by Qadi al-Nu'man al-Tamimi (d. 974) in his Kitdb al-Majalis wa'l-musayardt.

957 [geography; cartography; exploration; chemistry] died Abul Hasan Ali Al-Masudi, best known as a cartographer, was also a traveler historian, etc. Al-mas`oudi described his visit to the oilfields of Baku. Wrote on the reaction of alkali water with zaj (vitriol) water giving sulfuric acid.

965 - 1040 [mathematics; optics; physics] Born ibn al-Haitham (full name, ; Latinized name, Alhazen). Possibly the first to classify all even perfect numbers (i.e., numbers equal to the sum of their proper divisors) as those of the form 2k − 1(2k − 1) where 2k − 1 is prime number. Al-Haytham is also the first person to state Wilson's theorem. if p is prime than 1 + (p − 1)! is divisible by p. "It is called Wilson's theorem because of a comment by Waring in 1770 that John Wilson had noticed the result. There is no evidence that Wilson knew how to prove it. It was over 750 years later that Lagrange gave the first known proof to the statement in 1771.! “Haytham in the tenth-eleventh century wrote a scathing critique of Ptolemy’s work: ‘Ptolemy assumed an arrangement that cannot exist, and the fact that this arrangement produces in his imagination the motions that belong to the planets does not free him from the error he committed in his assumed arrangement, for the existing motions of the planets cannot be the result of an arrangement that is impossible to exist’.”[

972 - 1058 [humanities] Al-Mawardi (Alboacen) Political science, Sociology, Jurisprudence, Ethics.

975 - [education] Al-Azhar University, founded in Cairo, Egypt, was a Jami'ah ("university" in Arabic) which offered a variety of post-graduate academic degrees (ijazah), and had individual faculties[ for a theological seminary, Islamic law and Islamic jurisprudence, Arabic grammar, Islamic astronomy, early Islamic philosophy and logic in Islamic philosophy.

975 - 1075 - [ceramics, pottery] Fustat becomes a center for innovative Islamic pottery and ceramics.

980 [mathematics] Born al-Baghdadi (full name, ). Studied a slight variant of Thabit ibn Qurra's theorem on amicable numbers. Al-Baghdadi also wrote texts comparing the three systems of counting and arithmetic used in the region during this period. Made improvements on the decimal system.

981 - 1037 [astronomy; mathematics; medicine; philosophy] Ibn Sina (Avicenna); Medicine, Philosophy, Mathematics, Astronomy. Is considered to be the father of modern medicine

994 - [Astronomy, engineering] Abu-Mahmud al-Khujandi constructs the first astronomical sextant in Ray, Iran.

996 - [Astronomy, engineering] The geared mechanical astrolabe, featuring eight gear-wheels, is invented by Abū Rayhān al-Bīrūnī.

Last edited by Shooting Star; Saturday, June 30, 2012 at 03:14 AM.
Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
The Religion Of Islam MUKHTIAR ALI Islamiat 3 Friday, April 03, 2020 10:31 AM
Islamic Information safdarmehmood Islamiat 4 Thursday, June 28, 2018 08:09 AM
I.R. Essay Notes on Important Topics-Yesterday-Today-Tomorrow Noman International Relations 15 Wednesday, November 04, 2009 09:42 AM
Rise and Fall Of Muslim Scientists Eve General Knowledge, Quizzes, IQ Tests 0 Tuesday, June 19, 2007 12:17 PM
20 Greatest Inventions by Muslim Scientists Mr Ghayas Humorous, Inspirational and General Stuff 0 Monday, June 26, 2006 06:22 AM


CSS Forum on Facebook Follow CSS Forum on Twitter

Disclaimer: All messages made available as part of this discussion group (including any bulletin boards and chat rooms) and any opinions, advice, statements or other information contained in any messages posted or transmitted by any third party are the responsibility of the author of that message and not of CSSForum.com.pk (unless CSSForum.com.pk is specifically identified as the author of the message). The fact that a particular message is posted on or transmitted using this web site does not mean that CSSForum has endorsed that message in any way or verified the accuracy, completeness or usefulness of any message. We encourage visitors to the forum to report any objectionable message in site feedback. This forum is not monitored 24/7.

Sponsors: ArgusVision   vBulletin, Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.