View Single Post
  #5  
Old Sunday, October 08, 2006
Qurratulain's Avatar
Qurratulain Qurratulain is offline
Economist In Equilibrium
Medal of Appreciation: Awarded to appreciate member's contribution on forum. (Academic and professional achievements do not make you eligible for this medal) - Issue reason: she won the Essay competitionBest Moderator Award: Awarded for censoring all swearing and keeping posts in order. - Issue reason: Best ModMember of the Year: Awarded to those community members who have made invaluable contributions to the Community in the particular year - Issue reason: For the year 2006
 
Join Date: Feb 2006
Location: The Devil's Paradise
Posts: 1,742
Thanks: 118
Thanked 406 Times in 145 Posts
Qurratulain has a spectacular aura aboutQurratulain has a spectacular aura aboutQurratulain has a spectacular aura about
Default

Thermal properties


The appearance of the superconducting state is accompanied by rather drastic changes in both the thermodynamic equilibrium and thermal transport properties of a superconductor.

The heat capacity of a superconducting material is quite different in the normal and superconducting states. In the normal state (produced at temperatures below the transition temperature by applying a magnetic field greater than the critical field), the heat capacity is determined primarily by the normal electrons (with a small contribution from the thermal vibrations of the crystal lattice) and is nearly proportional to the temperature. In zero applied magnetic field, there appears a discontinuity in the heat capacity at the transition temperature. At temperatures just below the transition temperature, the heat capacity is larger than in the normal state. It decreases more rapidly with decreasing temperature, however, and at temperatures well below the transition temperature varies exponentially as e??/kT, where ? is a constant and k is Boltzmann's constant. Such an exponential temperature dependence is a hallmark of a system with a gap ? in the spectrum of allowed energy states. Heat capacity measurements provided the first indications of such a gap in superconductors, and one of the key features of the macroscopic BCS theory is its prediction of just such a gap.

Ordinarily a large electrical conductivity is accompanied by a large thermal conductivity, as in the case of copper, used in electrical wiring and cooking pans. However, the thermal conductivity of a pure superconductor is less in the superconducting state than in the normal state, and at very low temperatures approaches zero. Crudely speaking, the explanation for the association of infinite electrical conductivity with vanishing thermal conductivity is that the transport of heat requires the transport of disorder (entropy). The superconducting state is one of perfect order (zero entropy), and so there is no disorder to transport and therefore no thermal conductivity.
__________________
||||||||||||||||||||50% Complete
Reply With Quote