View Single Post
  #7  
Old Sunday, October 08, 2006
Qurratulain's Avatar
Qurratulain Qurratulain is offline
Economist In Equilibrium
Medal of Appreciation: Awarded to appreciate member's contribution on forum. (Academic and professional achievements do not make you eligible for this medal) - Issue reason: she won the Essay competitionBest Moderator Award: Awarded for censoring all swearing and keeping posts in order. - Issue reason: Best ModMember of the Year: Awarded to those community members who have made invaluable contributions to the Community in the particular year - Issue reason: For the year 2006
 
Join Date: Feb 2006
Location: The Devil's Paradise
Posts: 1,742
Thanks: 118
Thanked 406 Times in 145 Posts
Qurratulain has a spectacular aura aboutQurratulain has a spectacular aura aboutQurratulain has a spectacular aura about
Default

Microscopic (BCS) theory

The key to the basic interaction between electrons which gives rise to superconductivity was provided by the isotope effect. It is an interaction mediated by the background crystal lattice and can crudely be pictured as follows: An electron tends to create a slight distortion of the elastic lattice as it moves, because of the Coulomb attraction between the negatively charged electron and the positively charged lattice. If the distortion persists for a brief time (the lattice may ring like a struck bell), a second passing electron will see the distortion and be affected by it. Under certain circumstances, this can give rise to a weak indirect attractive interaction between the two electrons which may more than compensate their Coulomb repulsion.

The first forward step was taken by Cooper in 1956, when he showed that two electrons with an attractive interaction can bind together to form a “bound pair” (often called a Cooper pair) if they are in the presence of a high-density fluid of other electrons, no matter how weak the interaction is. The two partners of a Cooper pair have opposite momenta and spin angular momenta. Then, in 1957, Bardeen, Cooper, and Schrieffer showed how to construct a wave function in which all of the electrons (at least, all of the important ones) are paired. Once this wave function is adjusted to minimize the free energy, it can be used as the basis for a complete microscopic theory of superconductivity.

The successes of the BCS theory and its subsequent elaborations are manifold. One of its key features is the prediction of an energy gap. Excitations called quasiparticles (which are something like normal electrons) can be created out of the superconducting ground state by breaking up pairs, but only at the expense of a minimum energy of ? per excitation; ? is called the gap parameter. The original BCS theory predicted that ? is related to Tc by ? = 1.76kTc at T = 0 for all superconductors. This turns out to be nearly true, and where deviations occur they are understood in terms of modifications of the BCS theory. The manifestations of the energy gap in the low-temperature heat capacity and in electromagnetic absorption provide strong confirmation of the theory.
__________________
||||||||||||||||||||50% Complete
Reply With Quote