View Single Post
Old Wednesday, March 26, 2008
Janeeta's Avatar
Janeeta Janeeta is offline
Join Date: Dec 2006
Location: Karachi
Posts: 96
Thanks: 26
Thanked 121 Times in 39 Posts
Janeeta is on a distinguished road
Default IPC(inter process communication)


Interprocess communication (IPC) is a set of programming interfaces that allow a programmer to coordinate activities among different program processes that can run concurrently in an operating system. This allows a program to handle many user requests at the same time. Since even a single user request may result in multiple processes running in the operating system on the user's behalf, the processes need to communicate with each other. The IPC interfaces make this possible. Each IPC method has its own advantages and limitations so it is not unusual for a single program to use all of the IPC methods.

Race Conditions

In operating systems, processes that are working together share some common storage (main memory, file etc.) that each process can read and write. When two or more processes are reading or writing some shared data and the final result depends on who runs precisely when, are called race conditions. Concurrently executing threads that share data need to synchronize their operations and processing in order to avoid race condition on shared data. Only one ‘customer’ thread at a time should be allowed to examine and update the shared variable.

Race conditions are also possible in Operating Systems. If the ready queue is implemented as a linked list and if the ready queue is being manipulated during the handling of an interrupt, then interrupts must be disabled to prevent another interrupt before the first one completes. If interrupts are not disabled than the linked list could become corrupt.

Critical Section
How to avoid race conditions

The key to preventing trouble involving shared storage is find some way to prohibit more than one process from reading and writing the shared data simultaneously. That part of the program where the shared memory is accessed is called the Critical Section. To avoid race conditions and flawed results, one must identify codes in Critical Sections in each thread. The characteristic properties of the code that form a Critical Section are
  • Codes that reference one or more variables in a “read-update-write” fashion while any of those variables is possibly being altered by another thread.
  • Codes that alter one or more variables that are possibly being referenced in “read-updata-write” fashion by another thread.
  • Codes use a data structure while any part of it is possibly being altered by another thread.
  • Codes alter any part of a data structure while it is possibly in use by another thread.

Here, the important point is that when one process is executing shared modifiable data in its critical section, no other process is to be allowed to execute in its critical section. Thus, the execution of critical sections by the processes is mutually exclusive in time.

Mutual Exclusion
A way of making sure that if one process is using a shared modifiable data, the other processes will be excluded from doing the same thing.

Formally, while one process executes the shared variable, all other processes desiring to do so at the same time moment should be kept waiting; when that process has finished executing the shared variable, one of the processes waiting; while that process has finished executing the shared variable, one of the processes waiting to do so should be allowed to proceed. In this fashion, each process executing the shared data (variables) excludes all others from doing so simultaneously. This is called Mutual Exclusion.

Note that mutual exclusion needs to be enforced only when processes access shared modifiable data - when processes are performing operations that do not conflict with one another they should be allowed to proceed concurrently.

Mutual Exclusion Conditions
If we could arrange matters such that no two processes were ever in their critical sections simultaneously, we could avoid race conditions. We need four conditions to hold to have a good solution for the critical section problem (mutual exclusion).
  • No two processes may at the same moment inside their critical sections.
  • No assumptions are made about relative speeds of processes or number of CPUs.
  • No process should outside its critical section should block other processes.
  • No process should wait arbitrary long to enter its critical section.


A semaphore is a protected variable whose value can be accessed and altered only by the operations P and V and initialization operation called 'Semaphoiinitislize'.

Binary Semaphores can assume only the value 0 or the value 1 counting semaphores also called general semaphores can assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores S, written as P(S) or wait (S), operates as follows:

P(S): IF S > 0
THEN S := S - 1
ELSE (wait on S)

The V (or signal or wakeup or up) operation on semaphore S, written as V(S) or signal (S), operates as follows:

V(S): IF (one or more process are waiting on S)
THEN (let one of these processes proceed)
ELSE S := S +1
Reply With Quote