Friday, February 23, 2024
05:23 PM (GMT +5)

Go Back   CSS Forums > CSS Compulsory Subjects > Islamiat

Reply Share Thread: Submit Thread to Facebook Facebook     Submit Thread to Twitter Twitter     Submit Thread to Google+ Google+    
 
LinkBack Thread Tools Search this Thread
  #31  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Ibn Al-nafis (1213-1288 C.e.)

IBN AL-NAFIS
(1213-1288 C.E.)


Ala-al-Din Abu al-Hasan Ali Ibn Abi al-Hazm al-Qarshi al- Damashqi al-Misri was born in 607 A.H. of Damascus. He was educated at the Medical College-cum-Hospital founded by Nur al- Din Zangi. In medicine his teacher was Muhaththab al-Din Abd al- Rahim. Apart from medicine, Ibn al-Nafis learnt jurisprudence, literature and theology. He thus became a renowned expert on Shafi'i School of Jurisprudence as well as a reputed physician.

After acquiring his expertise in medicine and jurisprudence, he moved to Cairo where he was appointed as the Principal at the famous Nasri Hospital. Here he imparted training to a large number of medical specialists, including Ibn al-Quff al-Masihi, the famous surgeon. He also served at the Mansuriya School at Cairo. When he died in 678 A.H. he donated his house, library and clinic to the Mansuriya Hospital.

His major contribution lies in medicine. His approach comprised writing detailed commentaries on early works, critically evaluating them and adding his own original contribution. Hlis major original contribution of great significance was his discovery of the blood's circulatory system, which was re-discovered by modern science after a lapse of three centuries. He was the first to correctly describe the constitution of the lungs and gave a description of the bronchi and the interaction between the human body's vessels for air and blood. Also, he elaborated the function of the coronary arteries as feeding the cardiac muscle.

The most voluminous of his books is Al-Shamil fi al-Tibb, which was designed to be an encyclopaedia comprising 300 volumes, but it could not be completed due to his death. The manuscript is available at Damascus. His book on ophthalmology is largely an original contribution and is also extant. However, his book that became most famous was Mujaz al-Qanun and a number of commentaries were written on this. His own commentaries include one on Hippocrates' book. He wrote several volumes on Ibn Sina's Qanun, that are still extant. Likewise he wrote a commentary on Hunayn Ibn Ishaq's book. Another famous book embodying his original contribution was on the effects of diet on health. entitled Kitab al-Mukhtar fi al-Aghdhiya.

Ibn Al-Nafis' works integrated the then existing medical know- ledge and enriched it, thus exerting great influence on the development of medical science, both in the East and the West. However, only one of his books was translated into Latin at early stages and, therefore, a part of his work remained unknown to Europe for a long time.
Reply With Quote
  #32  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 13th century

13th century

1200s - [Chemistry] Al-Jawbari describes the preparation of rose water in the Book of Selected Disclosure of Secrets (Kitab kashf al-Asrar).

1200s - [chemistry; materials, glassmaking] Arabic manuscript on the manufacture of false gemstones and diamonds. Also describes spirits of alum, spirits of saltpetre and spirits of salts (hydrochloric acid).

1200s - [chemistry] An Arabic manuscript written in Syriac script gives description of various chemical materials and their properties such as sulfuric acid, sal-ammoniac, saltpetre and zaj (vitriol).

1201 - 1274 - [astronomy; mathematics] Nasir Al-Din Al-Tusi; Astronomy, Non-Euclidean geometry.

1204 - [astronomy] Died, Al-Bitruji (Alpetragius.)

1206 - [engineering, mechanics, technology] Al-Jazari, the father of modern-day engineering and the father of robotics, publishes The Book of Knowledge of Ingenious Mechanical Devices, in which he authors fifty inventions, including the combination lock, mechanical clocks driven by hydropower and weights, bolted joint lock, clock automaton, flow control regulator, closed-loop system, elephant clock, kitchen appliance, cam, camshaft, connecting rod, crank-connecting rod mechanism, suction pipe, suction piston pump with reciprocating piston motion and double-action motion, programmable humanoid robot, automatic gate, pointer, and geared and hydropowered water supply system. and especially the crankshaft, which is considered one of the most important mechanical inventions after the wheel Other devices he invented include a hand washing device, machines for raising water, accurate calibration of orifices, lamination of timber to reduce warping, static balancing of wheels, use of paper models to establish a design, casting of metals in closed mould boxes with green sand, emery powder, the most sophisticated candle clocks and water clocks of his time, crank-driven chain pump, water-powered saqiya chain pump, and intermittent working, and hour hand

1206 - [astronomy, technology] Al-Jazari invented monumental water-powered astronomical clocks which displayed moving models of the Sun, Moon, and stars. His largest astronomical clock displayed the zodiac and the solar and lunar orbits. Another innovative feature of the clock was a pointer which traveled across the top of a gateway and caused automatic doors to open every hour.

1207 - 1273 [sociology; poetry; spirituality] Jalal al-Din Muhammad Rumi, one of the best known Persian passion poets, famous for poignant poetry on the theme of spiritual enlightenment and passion.

1217 - 1329 [related] "Second wave of devastation of Muslim resources, lives, properties, institutions, and infrastructure over a period of one hundred and twelve years. Crusader invasions (1217-1291) and Mongol invasions (1219-1329). Crusaders active throughout the Mediterranean from Jerusalem and west to Muslim Spain. Fall of Muslim Córdoba (1236), Valencia (1238) and Seville (1248). Mongols devastation from the eastern most Muslim frontier, Central and Western Asia, India, Persia to Arab heartland. Fall of Baghdad (1258) and the end of Abbasid Caliphate. Two million Muslims massacred in Baghdad. Major scientific institutions, laboratories, and infrastructure destroyed in leading Muslim centers of civilization."

1213 - 1242 [anatomy, biology, medicine, pharmacology, pharmacopoeia, physiology] Ibn al-Nafis publishes his Commentary on Compound Drugs, a commentary on Avicenna's The Canon of Medicine concerning pharmacopoeia. It contains criticisms of Galen's doctrines on the heart and the blood vessels and dealt with the circulatory system to some extent. This work was later translated into Latin by Andrea Alpago of Belluno (d. 1520), who had lived in Syria for about 30 years before returning to Italy with a collection of medical Arabic books. A printed version of his translation was available in Venice from 1547.

1213 - 1288 [biology, cosmology, epistemology, futurology, geology, literature, physiology, psychology, science fiction, sociology] Ibn al-Nafis publishes his Theologus Autodidactus, the first science fiction novel, where he uses the plot to express many of his own themes on a wide variety of subjects, including biology, physiology, cosmology, epistemology, futurology, geology, natural philosophy, psychology, and sociology. The narrative is used to present religious, philosophical and scientific arguments on spontaneous generation and bodily resurrection, and the book also contains the earliest medical description on metabolism: "Both the body and its parts are in a continuous state of dissolution and nourishment, so they are inevitably undergoing permanent change."

1213 - 1288 - [anatomy, biology, medicine, ophthalmology, physiology] Ibn al-Nafis publishes his ophthalmological work, The Polished Book on Experimental Ophthalmology, where he discovers that the muscle behind the eyeball does not support the ophthalmic nerve, that they do not get in contact with it, that the optic nerves transect but do not get in touch with each other, and many new treatments for glaucoma and the weakness of vision in one eye when the other eye is affected by disease.

1228 - 1229 - [chemistry, military technology] Medieval French reports suggest that Muslim armies also used explosives against the Sixth Crusade army led by Ludwig IV, Landgrave of Thuringia in the 13th century.

1235 - [astronomical instruments] A geared mechanical astrolabe with an analog computer calendar is invented by Abi Bakr of Isfahan. His geared astrolabe uses a set of gear-wheels and is the oldest surviving complete mechanical geared machine in existence.

1242 - [anatomy, biology, medicine, physiology, scientific method] Ibn al-Nafis, an Arab physician and anatomist publishes another commentary on Avicenna's The Canon of Medicine called the Commentary on Anatomy in Avicenna's Canon, in which Ibn al-Nafis discovers the pulmonary circulation (the cycle involving the ventricles of the heart and the lungs) and coronary circulation, and describes the mechanism of breathing and its relation to the blood and how it nourishes on air in the lungs, for which he is considered the father of circulation theory and one of the greatest physiologists in history. He followed a "constructivist" path of the smaller circulatory system: "blood is purified in the lungs for the continuance of life and providing the body with the ability to work." During his time, the common view was that blood originates in the liver then travels to the right ventricle, then on to the organs of the body; another contemporary view was that blood is filtered through the diaphragm where it mixes with the air coming from the lungs. Ibn al-Nafis discredited all these views including ones by Galen and Avicenna, and at least an illustration of his manuscript is still extant. William Harvey later explained the circulatory system without reference to Ibn al-Nafis in 1628. Ibn al-Nafis also extolled the study of comparative anatomy in his Explaining the dissection of [Avicenna's] Canon which includes prefaces and citations of sources. He emphasized the rigours of verification by measurement, observation and experiment. He subjected conventional wisdom of his time to a critical review and verified it with experiment and observation, discarding errors. He was also an early proponent of experimental medicine, postmortem autopsy, and human dissection, and he also discredited many other erroneous Avicennian and Galenic doctrines on the humorism, pulse bones, muscles, intestines, sensory organs, bilious canals, esophagus, stomach, and the anatomy of almost every other part of the human body. Ibn al-Nafis also drew diagrams to illustrate different body parts in his new physiological system.

1242 - 1244 [biology, medicine, surgery, urology, scientific method] Ibn al-Nafis publishes the first 43 volumes of his medical encyclopedia, The Comprehensive Book on Medicine. One volume is dedicated to surgery, where he describes the "general and absolute principles of surgery", a variety of surgical instruments, and the examination of every type of surgical operation known to him. He states that in order for a surgical operation to be successful, full attention needs to be given to three stages of the operation: the "time of presentation" when the surgeon carries out a diagnosis on the affected area, the "time of operative treatment" when the surgeon repairs the affected organs, and the "time of preservation" when the patient needs to be taken care of by nurses. The Comprehensive Book on Medicine was also the earliest book dealing with the decubitus of a patient. The Comprehensive Book on Medicine is also the earliest book dealing with the decubitus of a patient. Another section is dedicated to urology, including the issues of sexual dysfunction and erectile dysfunction, where Ibn al-Nafis is one of the first to prescribe clinically tested drugs as medication for the treatment of these problems. His treatments are mainly oral drugs, though early topical and transurethral treatments are also mentioned in a few cases

1242 - 1288 [medicine] Ibn al-Nafis publishes more commentaries on Avicenna's The Canon of Medicine. All of his commentaries on The Canon of Medicine add up to 20 volumes in length.

1244 - 1288 [medicine] Ibn al-Nafis writes down notes for upcoming volumes of his medical encyclopedia, The Comprehensive Book on Medicine. His notes add up to a total of 300 volumes in length, though he is only able to publish 80 volumes before he dies in 1288. Even in its incomplete state, however, The Comprehensive Book on Medicine is one of the largest known medical encyclopedias in history, and was much larger than the more famous The Canon of Medicine by Avicenna. However, only several volumes of The Comprehensive Book on Medicine have survived into modern times.

1244 - 1288 [anatomy, medicine, science of hadith] Ibn al-Nafis publishes many other works, including The Choice of Foodstuffs which places a greater emphasis on diet and nutrition rather than the prescriptions of drugs; Commentary on Hippocrates' Aphorisms where he expresses his rebellious nature against established authorities as he states that he has decided to "throw light on and stand by true opinions, and forsake those which are false and erase their traces"; A Short Account of the Methodology of Hadith on the science of hadith; Epitome of the Canon; Synopsis of Medicine; An Essay on Organs; Reference Book for Physicians; among many others.

1248 - [anatomy, botany, pharmacy, veterinary medicine] Ibn al-Baitar dies. He studied and wrote on botany, pharmacy and is best known for studying animal anatomy and medicine. The Arabic term for veterinary medicine is named after him.

1258 - The sack of Baghdad results in the destruction of Baghdad along with all its libraries, including the House of Wisdom. Survivors said that the waters of the Tigris ran black with ink from the enormous quantities of books flung into the river.

1259 - [astronomy, instutution] The Maragheh observatory is founded by Nasīr al-Dīn al-Tūsī at the patronage of Hulagu Khan. It was the first example of the observatory as a research institute (as opposed to an ancient observation post).

1260 - [mathematics] Al-Farisi isa born. He gave a new proof of Thabit ibn Qurra's theorem, introducing important new ideas concerning factorization and combinatorial methods. He also gave the pair of amicable numbers 17296, 18416 which have also been attributed to Fermat as well as Thabit ibn Qurra

1260 - [chemistry, military technology] The first portable hand cannons (midfa) loaded with explosive gunpowder, the first example of a handgun and portable firearm, were used by the Egyptians to repel the Mongols at the Battle of Ain Jalut. The gunpowder compositions used for the cannons at these battles were later described in several manuscripts in the early 14th century. According to Shams al-Din Muhammad (d. 1327), the cannons had an explosive gunpowder composition (74% saltpetre, 11% sulfur, 15% carbon) almost identical to the ideal compositions for explosive gunpowder used in modern times. Gunpowder cartridges were also first employed at the Battle of Ain Jalut by the Egyptians, for use in their fire lances and hand cannons against the Mongols. Egyptian soldiers at the Battle of Ain Jalut were also the first to smear dissolved talc (from Arabic talq) on their hands, as forms of fire protection from gunpowder. They also wore fireproof clothing, to which gunpowder cartridges were attached.

1270 - [chemistry, military technology] The first complete purification process for potassium nitrate is described in 1270 by the Arab chemist and engineer Hasan al-Rammah of Syria in his book al-Furusiyya wa al-Manasib al-Harbiyya (The Book of Military Horsemanship and Ingenious War Devices, a.k.a. the Treatise on Horsemanship and Stratagems of War). He first described the use of potassium carbonate (in the form of wood ashes) to remove calcium and magnesium salts from the potassium nitrate. Several almost identical compositions were first described by the Arab engineer Hasan al-Rammah as a recipe for the rockets (tayyar) he described in The Book of Military Horsemanship and Ingenious War Devices in 1270. Several examples include a tayyar "rocket" (75% saltpetre, 8% sulfur, 15% carbon) and the tayyar buruq "lightning rocket" (74% saltpetre, 10% sulfur, 15% carbon). He also states recipes for fireworks and firecrackers made from these explosive gunpowder compositions. He states in his book that many of these recipes were known to his father and grandfather, hence dating back to at least the late 12th century. Compositions for an explosive gunpowder effect were not known in China or Europe until the 14th century. The torpedo is also invented by Hasan al-Rammah, who shows illustrations of a torpedo running on water with a rocket system filled with explosive materials and having three firing points.

1270 - [medicine, psychiatry, psychology] Famous psychiatric hospitals are built by Muslim physicians in Damascus and Aleppo.

-1271 - 1273 Ballistic weapons were manufactured in the Muslim world since the time of Kublai Khan in the 13th century. According to Chinese sources, two Muslim engineers, Alaaddin and Ismail (d. 1330), built machines of a ballistic-weapons nature before the besieged city of Hang-show between 1271-1273. Alaaddin's weapons also played a major role in the conquest of several other Chinese cities. His son Ma-ho-scha also developed ballistic weapons. Ismail (transliterated as I-ssu-ma-yin) was present in the Mongol siege of Hsiang-yiang, where he built a war machine with the characteristics of a ballistic weapon. Chinese sources mention that when this war machines were fired, the earth and skies shook, the cannons were buried seven feet into the ground and destroyed everything. His son Yakub also developed ballistic war machines.

1273 - 1331 [astronomy; geography; history] Abu al-Fida (Abulfeda).

1274 - [chemistry, military technology] The use of cannons as siege machines dates back to Abu Yaqub Yusuf who employed them at the siege of Sijilmasa in 1274, according to Ibn Khaldun.

1275 - [engineering, rocketry, weaponry] Hasan al-Rammah invents the torpedo in Syria.

1277 - [materials; glass and ceramics] A treaty for the transfer of glassmaking technology signed between the crusader Bohemond VII, titular prince of Antioch and the Doge of Venice leads to the transfer of Syrian glassworkers and their trade secrets and the subsequent rise of Venetian glass industry, the most prominent in Europe for centuries. The techniques henceforth, closely guarded by Venitians only become known in France in the 1600s.

1285 - [medicine] The largest hospital of the Middle Ages and pre-modern era is built in Cairo, Egypt, by Sultan Qalaun al-Mansur. According to Will Durant, the hospital had a spacious quadrangular enclosure with four buildings around a courtyard "adorned with arcades and cooled with fountains and brooks." The hospital had "separate wards for diverse diseases and for convalescents", and had laboratories, a dispensary, out-patient clinics, kitchens, baths, a library, a religious place of worship, lecture halls, and "pleasant accommodations for the insane." Treatment was given for free to patients of all backgrounds, regardless of gender, ethnicity or income, while convalescents were offered disbursements on their departure so that they wouldn't need to return to work immediately. "The sleepless were provided with soft music, professional story-tellers, and perhaps books of history."

c. 1296 - [astronomy, technology] The first astronomical uses of the magnetic compass is found in a treatise on astronomical instruments written by the Yemeni sultan al-Ashraf (d. 1296). This was the first reference to the compass in astronomical literature.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:50 AM.
Reply With Quote
  #33  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default Ibn Khaldun (1332-1395 C.e.)

IBN KHALDUN
(1332-1395 C.E.)


Abd al-Rahman Ibn Mohammad is generally known as Ibn Khaldun after a remote ancestor. His parents, originally Yemenite Arabs, had settled in Spain, but after the fall of Seville, had migrated to Tunisia. He was born in Tunisia in 1332 C.E., where he received his early education and where, still in his teens, he entered the service of the Egyptian ruler Sultan Barquq. His thirst for advanced knowledge and a better academic setting soon made him leave this service and migrate to Fez. This was followed by a long period of unrest marked by contemporary political rivalries affecting his career. This turbulent period also included a three year refuge in a small village Qalat Ibn Salama in Algeria, which provided him with the opportunity to write Muqaddimah, the first volume of his world history that won him an immortal place among historians, sociologists and philosophers. The uncertainty of his career still continued, with Egypt becoming his final abode where he spent his last 24 years. Here he lived a life of fame and respect, marked by his appointment as the Chief Malakite Judge and lecturing at the Al-Azhar University, but envy caused his removal from his high judicial office as many as five times.

Ibn Khaldun's chief contribution lies in philosophy of history and sociology. He sought to write a world history preambled by a first volume aimed at an analysis of historical events. This volume, commonly known as Muqaddimah or 'Prolegomena', was based on Ibn Khaldun's unique approach and original contribution and became a masterpiece in literature on philosophy of history and sociology. The chief concern of this monumental work was to identify psychological, economic, environmental and social facts that contribute to the advancement of human civilization and the currents of history. In this context, he analysed the dynamics of group relationships and showed how group-feelings, al-'Asabiyya, give rise to the ascent of a new civilisation and political power and how, later on, its diffusion into a more general civilization invites the advent of a still new 'Asabiyya in its pristine form. He identified an almost rhythmic repetition of rise and fall in human civilization, and analysed factors contributing to it. His contribution to history is marked by the fact that, unlike most earlier writers interpreting history largely in a political context, he emphasised environmental, sociological, psychological and economic factors governing the apparent events. This revolutionised the science of history and also laid the foundation of Umraniyat (Sociology).

Apart from the Muqaddimah that became an important independent book even during the lifetime of the author, the other volumes of his world history Kitab al-I'bar deal with the history of Arabs, contemporary Muslim rulers, contemporary European rulers, ancient history of Arabs, Jews, Greeks, Romans, Persians, etc., Islamic History, Egyptian history and North-African history, especially that of Berbers and tribes living in the adjoining areas. The last volume deals largely with the events of his own life and is known as Al-Tasrif. This was also written in a scientific manner and initiated a new analytical tradition in the art of writing autobiography. A book on mathematics written by him is not extant.

Ibn Khaldun's influence on the subject of history, philosophy of history, sociology, political science and education has remained paramount ever since his life. His books have been translated into many languages, both in the East and the West, and have inspired subsequent development of these sciences. For instance, Prof. Gum Ploughs and Kolosio consider Muqaddimah as superior in scholarship to Machiavelli's The Prince written a century later, as the forrner bases the diagnosis more on cultural, sociological, economic and psychological factors.
Reply With Quote
  #34  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 14th century

14th century

1300s - [astronomy, engineering] The spherical astrolabe is invented in the Middle East. Ibn al-Shatir also invents the astrolabic clock in Syria, and he also invents the compass dial, a timekeeping device incorporating both a universal sundial and a magnetic compass, which he invented for the purpose of finding the times of Salah prayers.

1300s - [bacteriology, etiology, medicine, microbiology, pathology] When the Black Death bubonic plague reached al-Andalus, Ibn Khatima discovered that infectious diseases are caused by microorganisms which enter the human body.

1300 - 1348 [navigation] Abubakari II, a mansa of the Mali Empire, attempts to cross the Atlantic Ocean. According to the Arabic historian Ibn Fadlullah al-Umari (1300-1348), in his encyclopaedic work Masalik Al-Absar, Abubakari set out on a journey equipped with "two hundred boats full of men, and many others full of gold, water and provisions sufficient for several years" (see Pre-Columbian Islamic contact theories).

1301 - [ceramics] Al-Kashani promotes a center for ceramics. He also writes a book on Islamic ceramics techniques. His name is still associated with ceramics in the Muslim Orient today.

1312 - 1361 [cryptography] Taj ad-Din Ali ibn ad-Duraihim ben Muhammad ath-Tha 'alibi al-Mausili wrote on cryptology, but his writings have been lost. To his work is attributed the section on cryptology in an encyclopedia (Subh al-a 'sha) by Shihab al-Din abu 'l-Abbas Ahmad ben Ali ben Ahmad Abd Allah al-Qalqashandi (1355 or 1356 – 1418). The list of ciphers in this work included both substitution and transposition, and for the first time, a cipher with multiple substitutions for each plaintext letter. Also traced to Ibn al-Duraihim is an exposition on and worked example of cryptanalysis, including the use of tables of letter frequencies and sets of letters which can not occur together in one word. Al-Qalqashandi was a medieval Egyptian writer born in a village in the Nile Delta. He is the author of Subh al-a 'sha, a fourteen volume encyclopedia in Arabic, which included a section on cryptology. This information was attributed to Taj ad-Din al-Mausili (see Ahmad al-Qalqashandi).

1304 - 1369 [exploration, travel] Abu Abdullah Muhammad Ibn Battuta was a world traveler. He travels along a 75,000 mile voyage from Morocco to China and back. These journeys covered much of the Old World, extending from North Africa, West Africa, Southern Europe and Eastern Europe in the west, to the Middle East, Indian subcontinent, Central Asia, Southeast Asia and China in the east, a distance readily surpassing that of his predecessors and his near-contemporary Marco Polo.

1313 - 1374 - [bacteriology, etiology, medicine, pathology] The Andalusian physician Ibn al-Khatib wrote a treatise called On the Plague, in which he stated: "The existence of contagion is established by experience, investigation, the evidence of the senses and trustworthy reports. These facts constitute a sound argument. The fact of infection becomes clear to the investigator who notices how he who establishes contact with the aflicted gets the disease, whereas he who is not in contact remains safe, and how transmission is affected through garments, vessels and earrings."

1304 – 1375 [astronomy] Ibn al-Shatir, a Muslim astronomer from Damascus, in A Final Inquiry Concerning the Rectification of Planetary Theory, incorporated the Urdi lemma and eliminated the need for an equant by introducing an extra epicycle (the Tusi-couple), departing from the Ptolemaic system in a way that was mathematically identical to what Nicolaus Copernicus did in the 16th century. Ibn al-Shatir's system was also only approximately geocentric, rather than exactly so, having demonstrated trigonometrically that the Earth was not the exact center of the universe. While previous Maragha models were just as accurate as the Ptolemaic model, Ibn al-Shatir's geometrical model was the first that was actually superior to the Ptolemaic model in terms of its better agreement with empirical observations.[273][274] Ibn al-Shatir’s rectified model was later adapted into a heliocentric model by Copernicus which was mathematically achieved by reversing the direction of the last vector connecting the Earth to the Sun in Ibn al-Shatir's model.

1371 [astronomy, engineering] As ancient sundials were nodus-based with straight hour-lines, they indicated unequal hours—also called temporary hours—that varied with the seasons. Every day was divided into twelve equal segments; thus, hours were shorter in winter and longer in summer. The idea of using hours of equal length throughout the year was the innovation of Ibn al-Shatir, based on earlier developments in trigonometry by Muhammad ibn Jābir al-Harrānī al-Battānī (Albategni). Ibn al-Shatir was aware that "using a gnomon that is parallel to the Earth's axis will produce sundials whose hour lines indicate equal hours on any day of the year." His sundial is the oldest polar-axis sundial still in existence. The concept later appeared in Western sundials from at least 1446.

1377 [demography, economics, historiography, history, humanities, political science, social sciences, sociology] Ibn Khaldun, the father of demography, cultural history, historiography, the philosophy of history, sociology, and the social sciences, and one of the forerunners of modern economics, writes his most famous work, the Muqaddimah (known as Prolegomenon in the West), which is encyclopedic in breadth, surveys the state of knowledge of his day, covering geography, accounts of the peoples of the world and their known history, the classification and aims of the sciences, and the religious sciences. In the social sciences, he introduces the concepts of social philosophy, social conflict theories, Asabiyyah (social cohesion), social capital, social networks, the Laffer curve, the historical method, standard of evidence, propoganda, systemic bias, the rise and fall of civilizations, dialectic and feedback loops, systems theory, corporate social responsibility, economic growth, macroeconomics, population growth, human capital development and the Khaldun-Laffer curve.

1377 [biology, chemistry, evolution] Ibn Khaldun's Muqaddimah also makes several contributions to biology and chemistry. He develops a biological theory of evolution based on empirical evidence and in which he begins with minerals evolving into plants and then animals and ending with humans evolving from monkeys, which he states is "as far as our (physical) observation extends." In chemistry, he refutes the practice of alchemy and discredits the theory of the transmutation of metals.

1380 [mathematics] Al-Kashi "contributed to the development of decimal fractions not only for approximating algebraic numbers, but also for real numbers such as pi. His contribution to decimal fractions is so major that for many years he was considered as their inventor. Although not the first to do so, al-Kashi gave an algorithm for calculating nth roots which is a special case of the methods given many centuries later by Ruffini and Horner."

1393 - 1449 - [astronomy] Ulugh Beg commissions an observatory at Samarqand in present-day Uzbekistan.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:47 AM.
Reply With Quote
  #35  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 15th century

15th century

1400 - 1500 - [related] Third wave of devastation of Muslim resources, lives, properties, institutions, and infrastructure. End of Muslim rule in Spain after the completion of the Reconquista in 1492. More than one million volumes of Muslim works on science, arts, philosophy and culture were burnt in the public square of Vivarrambla in Granada. Colonization began in Africa, Asia, and the Americas.

1400s [mathematics] Ibn al-Banna and al-Qalasadi used symbols for mathematics in the 15th century "and, although we do not know exactly when their use began, we know that symbols were used at least a century before this."

• 1400 - 1406 [astronomy, mathematics, physics] Jamshīd al-Kāshī is invited to the Samarqand observatory by Ulugh Beg to pursue his study of mathematics, astronomy and physics.

1400 - 1429 [astronomy, mathematics] Jamshīd al-Kāshī is the first to use the decimal point notation in arithmetic and Arabic numerals. His works include The Key of arithmetics, Discoveries in mathematics, The Decimal point, and The benefits of the zero. The contents of the Benefits of the Zero are an introduction followed by five essays: "On whole number arithmetic", "On fractional arithmetic", "On astrology", "On areas", and "On finding the unknowns [unknown variables]". He also wrote the Thesis on the sine and the chord; The garden of gardens or Promenade of the gardens describing an instrument he devised and used at the Samarqand observatory to compile an ephemeris and for computing solar and lunar eclipses; the ephemeresis Zayj Al-Khaqani which also includes mathematical tables and corrections of the ephemeresis by al-Tusi; Thesis on finding the first degree sine; and more.

1400 - 1429 [astronomical instruments] Al-Kashi invents the Plate of Conjunctions, an analog computer instrument used to determine the time of day at which planetary conjunctions will occur, and for performing linear interpolation. He also invents a mechanical planetary computer which he calls the Plate of Zones, which could graphically solve a number of planetary problems, including the prediction of the true positions in longitude of the Sun and Moon, and the planets in terms of elliptical orbits; the latitudes of the Sun, Moon, and planets; and the ecliptic of the Sun. The instrument also incorporated an alhidade and ruler.

1400 - 1474 [astronomy, astrophysics, mathematics, physics] Ali al-Qushji (d. 1474) rejected Aristotelian physics and completely separated natural philosophy from Islamic astronomy, allowing astronomy to become a purely empirical and mathematical science. This allowed him to explore alternatives to the Aristotelian notion of a stationery Earth, as he explored the idea of a moving Earth instead. He found empirical evidence for the Earth's rotation through his observation on comets and concluded, on the basis of empiricism rather than speculative philosophy, that the moving Earth theory is just as likely to be true as the stationary Earth theory. Ali al-Qushji also improved on Nasir al-Din al-Tusi's planetary model and presented an alternative planetary model for Mercury.

1403 - 1433 [navigation] The Chinese Muslim general Zheng He travels across the Indian Ocean in newly-constructed troopships and treasure ships.

1406 - 1409 [astronomy] Jamshīd al-Kāshī computed and observed the solar eclipses of 809 AH, 810 AH and 811 AH.

1411 [mathematics] Al-Kashi writes Compendium of the Science of Astronomy.

1424 [mathematics] Al-Kashi writes Treatise on the Circumference giving a remarkably accurate approximation to pi in both sexagesimal and decimal forms, computing pi to 8 sexagesimal places and 16 decimal places.

1427 [mathematics] Al-Kashi completes The Key to Arithmetic containing work of great depth on decimal fractions. It applies arithmetical and algebraic methods to the solution of various problems, including several geometric ones and is one of the best textbooks in the whole of medieval literature.

1437 [mathematics] Ulugh Beg publishes his star catalogue, the Zij-i-Sultani. It contains trigonometric tables correct to eight decimal places based on Ulugh Beg's calculation of the sine of one degree which he calculated correctly to 16 decimal places.

1453 [military technology] The first supergun was the Great Turkish Bombard, used by the troops of Mehmed II to capture Constantinople. It had a 762 mm bore, and fired 680 kg (1500 lb) stones.

1470 - 1550 - [ceramics, pottery] Tabriz becomes a center for innovative Islamic pottery and ceramics.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:42 AM.
Reply With Quote
  #36  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 16th century

16th century

1500s [architecture, engineering, urban planning] The city of Shibam is built in Yemen. This city is regarded as the "oldest skyscraper-city in the world", the "Manhattan of the desert", and the earliest example of urban planning based on the principle of vertical construction. Shibam was made up of over 500 tower houses, each one rising 5 to 9 storeys high, with each floor being an apartment occupied by a single family. The city has the tallest mudbrick buildings in the world, with some of them being over 100 feet (over 30 meters) high, thus being the first high-rise (which need to be at least 75 feet or 23 meters) apartment buildings and tower blocks.

1500 - 1528 [astronomy, astrophysics, physics] Al-Birjandi continued the debate on the Earth's rotation after Ali al-Qushji. In his analysis of what might occur if the Earth were rotating, he develops a hypothesis similar to Galileo Galilei's notion of "circular inertia", which he described in an observational test (as a response to one of Qutb al-Din al-Shirazi's arguments): "The small or large rock will fall to the Earth along the path of a line that is perpendicular to the plane (sath) of the horizon; this is witnessed by experience (tajriba). And this perpendicular is away from the tangent point of the Earth’s sphere and the plane of the perceived (hissi) horizon. This point moves with the motion of the Earth and thus there will be no difference in place of fall of the two rocks."

1500 - 1550 [astronomy] Shams al-Din al-Khafri, the last major astronomer of the hay'a tradition, was the first to realize that "all mathematical modeling had no physical truth by itself and was simply another language with which one could describe the physical observed reality."

1551 [engineering] Taqi al-Din invents the steam turbine in Ottoman Egypt. He first described it in The Sublime Methods of Spiritual Machines, which describes the use of his steam turbine as the prime mover for the first steam-powered and self-rotating spit.

1551 - 1574 [astronomy, engineering] Taqi al-Din invents a rudimentary telescope, as described in his Book of the Light of the Pupil of Vision and the Light of the Truth of the Sights around 1574. He describes it as an instrument that makes objects located far away appear closer to the observer, and states that the instrument helps to see distant objects in detail by bringing them very close. He also states that he wrote another earlier treatise explaining the way this instrument is made and used, suggesting that he invented it some time before 1574.

1556 - 1559 [engineering] Taqi al-Din publishes The Brightest Stars for the Construction of Mechanical Clocks, which describes the first mechanical alarm clock, the first spring-powered astronomical clock, and the first clock and mechanical watch to first measure time in minutes.

1559 [engineering] Taqi al-Din invents a 'Monobloc' pump with a six cylinder engine. It was a hydropowered water-raising machine incorporating valves, suction and delivery pipes, piston rods with lead weights, trip levers with pin joints, and cams on the axle of a water-driven scoop-wheel.

1577 [astronomy, engineering] Taqi al-Din builds the Istanbul
observatory of al-Din, the largest astronomical observatory in its time, with the patronage of the Ottoman Sultan Murad III.

1577 - 1580 [astronomy, engineering] At the Istanbul observatory of al-Din, Taqi al-Din carries out astronomical observations. He produces a zij (named Unbored Pearl) and astronomical catalogues that are more accurate than those of his contemporaries, Tycho Brahe and Nicolaus Copernicus. Taqi al-Din is able to achieve this with his new invention of the "observational clock", which he describes as "a mechanical clock with three dials which show the hours, the minutes, and the seconds." This is the first clock to measure time in seconds, and he uses it for astronomical purposes, specifically for measuring the right ascension of the stars. This is considered one of the most important innovations in 16th century practical astronomy, as previous clocks were not accurate enough to be used for astronomical purposes. He further improves his observational clock, using only one dial to represent the hours, minutes and seconds, describing it as "a mechanical clock with a dial showing the hours, minutes and seconds and we divided every minute into five seconds." Taqi al-Din is also the first astronomer to employ a decimal point notation in his observations rather than the sexagesimal fractions used by his contemporaries and predecessors.

1579 [civil engineering] The first prefabricated homes and movable structure are invented by Akbar the Great

1580 [astronomy] The Istanbul observatory of al-Din is destroyed by Sultan Murad III.

• 1582 [military technology] Fathullah Shirazi, a Persian-Indian polymath and mechanical engineer who worked for Akbar the Great in the Mughal Empire, invented the autocannon, the earliest multi-shot machine gun. As opposed to the polybolos and repeating crossbows used earlier in ancient Greece and China, respectively, Shirazi's rapid-firing gun had multiple gun barrels that fired hand cannons loaded with gunpowder. Another cannon-related machine he created could clean sixteen gun barrels simultaneously, and was operated by a cow.

1582 [technology] Fathullah Shirazi invents a corn-griding carriage, which can be used to transport passengers and for grinding corn.

1589 - 1590 [astronomy, engineering, metallurgy] The seamless celestial globe invented by Muslim metallurgists and instrument-makers in Mughal India, specifically Lahore and Kashmir, is considered to be one of the most remarkable feats in metallurgy and engineering. All globes before and after this were seamed, and in the 20th century, it was believed by metallurgists to be technically impossible to create a metal globe without any seams. It was in the 1980s, however, that Emilie Savage-Smith discovered several celestial globes without any seams in Lahore and Kashmir. The earliest was invented in Kashmir by the Muslim metallurgist Ali Kashmiri ibn Luqman in 998 AH (1589-1590 CE) during Akbar the Great's reign; he invented the method of lost-wax casting in order to produce these globes. 21 such globes were produced, and these remain the only examples of seamless metal globes. These seamless celestial globes are considered to be an unsurpassed feat in metallurgy, hence some consider this achievement to be comparable to that of the Great Pyramid of Giza which was considered an unsurpassed feat in architecture until the 19th century.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:40 AM.
Reply With Quote
  #37  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 17th century

17th century

1600s [mathematics] The Arabic mathematician Muhammad Baqir Yazdi jointly discovered the pair of amicable numbers 9,363,584 and 9,437,056 along with Descartes (1636)..

1600 - 1640 [philosophy] Persian philosopher Mulla Sadra founded the school of Transcendent Theosophy and developed the concept of "existence precedes essence". His work bought "a new philosophical insight in dealing with the nature of reality" and created "a major transition from essentialism to existentialism" in Islamic philosophy, several centuries before this occurred in Western philosophy.

1630 - 1632 [aviation, flight] The Turk Hezarfen Ahmet Celebi is said to have flown from the Galata Tower and crossed the Bosphorus, landing 3.38 kilometers away in Üsküdar's Doğancılar square.

1633 [aviation, flight, rocketry] Hezarfen Ahmet Celebi's brother, Lagari Hasan Çelebi, launched himself in the first artificially-powered manned rocket, using 150 okka (about 300 pounds) of gunpowder as the firing fuel, and he landed successfully. This is more than two hundred years before similar attempts in modern Europe and the United States.

1659 - 1660 Another seamless celestial globe is produced in the Mughal Empire in 1070 AH (1659-60 CE) by Muhammad Salih Tahtawi with Arabic and Sanskrit inscriptions.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:38 AM.
Reply With Quote
  #38  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 18th century

18th century

1720 - [Navigation technology] The Ottoman dockyard architect Ibrahim Efendi invented a submarine called the tahtelbahir. The Ottoman writer Seyyid Vehbi, in his Surname-i-Humayun, compared this submarine to an alligator. He recorded that during the circumcision ceremony for Sultan Ahmed III's sons, "the alligator-like submarine slowly emerged on the water and moved slowly to the sultan, and after staying on the sea for half an hour, submerged in the sea again to the great surprise of the public; then emerged one hour later, with five people walking outside the mouth of this alligator-like submarine, with trays of rice and zerde (a dish of sweetened rice) on their heads." He explained the technical information concerning the submarine "submerging in the sea and the crew being able to breath through pipes while under the sea"

1783 - 1799 - [rocketry] Tipu, Sultan of Mysore (r. 1783-1799) in the south of India, was an experimenter with war rockets and the inventor of iron-cased rocket artillery. He successfully used these iron rockets against the larger forces of the British East India Company during the Anglo-Mysore Wars. His rockets were much more advanced than what the British had seen, chiefly because of the use of iron tubes for holding the propellant; this enabled higher thrust and longer range for the missile (up to 2 km range). After Tipu's eventual defeat in the Fourth Anglo-Mysore War and the capture of the Mysore iron rockets, they were influential in British rocket development and were soon put into use in the Napoleonic Wars Two of his rockets, captured by the British at Srirangapatna, are displayed in the Woolwich Royal Artillery Museum in London. They were the first rockets to have a rocket motor casing made of steel with multiple nozzles. The rocket, 50 mm in diameter and 250 mm long, had a range performance of 900 meters to 1.5 km.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:37 AM.
Reply With Quote
  #39  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 19th century

19th century

1814 - [cosmetics, hygiene] - Sake Dean Mahomet, a Bengali traveller and entrepreneur, developed the shampoo, inspired by the Indian practice of making fragrant hair-oil.

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:37 AM.
Reply With Quote
  #40  
Old Sunday, August 03, 2008
Faraz_1984's Avatar
Banned
 
Join Date: Apr 2008
Location: Alone
Posts: 590
Thanks: 768
Thanked 286 Times in 200 Posts
Faraz_1984 is infamous around these parts
Default 20th century

20th century

1931 - 1942 [chemistry] Salimuzzaman Siddiqui was a leading Pakistani scientist in natural products chemistry. He is the pioneer in extracting chemical compunds from the Neem and Rauwolfia, and is also known for isolating novel chemical compunds from various other flora in the Indian subcontinent. As the director of H.E.J. Research Institute of Chemistry, he carried out extensive research with a team of scientists on pharmacology of various plants to extract a number of chemical substances of medicinal importance.

1944 - 2000 [medicine, engineering] Iranian physician and engineer Toffy Musivand invents artificial cardiac pump as treatment for heart failure, and develops "remote power transfer for implantable medical devices, remote patient monitoring (telemedicine), biofluid dynamics to reduce/eliminate thrombosis in blood conducting devices, patient care simulation centre, detection devices and methods for detection, in situ sterilization, medical devices (failure analysis and regulatory process), and medical sensors."

1953 [economics] Pakistani developmental activist Akhtar Hameed Khan pioneers the concept of microcredit

1960 [physics] Iranian physicist Ali Javan invents the gas laser

1961 [astronautics, space exploration] Azerbaijani rocket scientist Kerim Kerimov becomes one of the founders of the Soviet space program and one of the lead architects responsible for the launch of the Vostok 1, the first human spaceflight.

1965 [mathematics; formal logic] Iranian mathematician Lotfi Asker Zadeh founded fuzzy set theory as an extension of the classical notion of set and he founded the field of Fuzzy Mathematics

1966 [astronautics, space exploration] Kerim Kerimov becomes the lead scientist of the Soviet space program.

1967 [astronautics, space exploration] Kerim Kerimov launches the Cosmos 186 and Cosmos 188, the first space docks (and precursors of space stations), during which mutual search, approach, mooring and docking were automatically performed for the first time in the history of space exploration.

1967 - 1972 [astronautics, space exploration] Farouk El-Baz from Egypt worked for NASA and was involved in the first Moon landings with the Apollo program, where he was secretary of the Landing Site Selection Committee, Principal Investigator of Visual Observations and Photography, chairman of the Astronaut Training Group, and assisted in the planning of scientific explorations of the Moon, including the selection of landing sites for the Apollo missions and the training of astronauts in lunar observations and photography.

1969 [engineering] Bangladeshi engineer Fazlur Khan, regarded as the "Einstein of structural engineering" and "the greatest architectural engineer of the second half of the 20th century" for his designs of structural systems that remain fundamental to all high-rise skyscrapers, designs and constructs the John Hancock Center.

1969 [chemistry, medicine] Iranian scientist Samuel Rahbar discovered glycosylated hemoglobin (HbA1C), a form of hemoglobin used primarily to identify plasma glucose concentration over time. He was also the first to describe its increase in diabetes.

1971 [economics] Bangladeshi economist Muhammad Yunus, founder of Grameen Bank, successfully applies the concept of microcredit to the first microfinance banking system.

1971 [astronautics, space exploration] Kerim Kerimov launches the first space station, the Salyut 1.

1972 - 1982 [astronautics, space exploration] Kerim Kerimov launches more space stations as part of the Salyut series.

1973 [engineering] Fazlur Khan designs and constructs the Sears Tower. Standing at 527.3 metres tall, it remains the world's tallest building up until the construction of the Burj Dubai in 2007.

1973 [mathematics, formal logic] Lotfi Zadeh founded the field of fuzzy logic.

1979 [physics] A Pakistani theoretical physicist, Abdus Salam, received the Nobel Prize in Physics for his pioneering work on the electroweak interaction theory which is the mathematical and conceptual synthesis of the electromagnetic and weak interactions

1980s [engineering, nuclear physics] Pakistan was the first Islamic country which successfully developed nuclear technology, under the leadership of Abdul Qadeer Khan

1985 [astronautics, space exploration] Sultan bin Salman bin Abdulaziz Al Saud becomes the first Muslim astronaut in space, as a Payload Specialist aboard the STS-51-G Space Shuttle Discovery, completed on June 24

1985 [astronautics, space exploration] Muhammed Faris is selected to participate in the Intercosmos spaceflight program on September 30 as the first Syrian in space

1986 [astronautics, space exploration] Kerim Kerimov launches the Mir, the first consistently inhabited long-term research space station and which holds the record for the longest continuous human presence in space.

1987 [astronautics, space exploration] Muhammed Faris becomes the first Syrian in space aboard the Soyuz TM-2 and Soyuz TM-3 expeditions to Mir space station. He is awarded the Hero of the Soviet Union and Order of Lenin titles later that year.

1988 [astronautics, space exploration] Abdul Ahad Mohmand becomes the first Afghan astronaut in space, aboard the Soyuz TM-5 expedition to Mir space station

1990 [economics] Pakistani economist Mahbub ul Haq co-develops the Human Development Index

1994 - 1998 [astronautics, space exploration] Talgat Musabayev becomes the first Kazakh astronaut in space, as a flight engineer aboard the Soyuz TM-19 (for over 125 days) and commander aboard the Soyuz TM-27 (for over 207 days) expeditions to Mir space station

1995 [computer science] Iranian American computer scientist Pierre Omidyar, becomes the founder of eBay

1997 [physics, string theory] Iranian physicist Cumrun Vafa, one of the leading string theorists of modern times, develops the F-theory and proposes the Vafa-Witten theorem

1998 [architecture, engineering] The world's tallest twin towers, the Petronas Twin Towers, is built in Malaysia

1999 [chemistry] Egyptian chemist Ahmed Zewail is awarded the Nobel Prize in Chemistry for his advances in femtochemistry

Last edited by Shooting Star; Saturday, June 30, 2012 at 02:35 AM.
Reply With Quote
Reply

Thread Tools Search this Thread
Search this Thread:

Advanced Search

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
The Religion Of Islam MUKHTIAR ALI Islamiat 3 Friday, April 03, 2020 10:31 AM
Islamic Information safdarmehmood Islamiat 4 Thursday, June 28, 2018 08:09 AM
I.R. Essay Notes on Important Topics-Yesterday-Today-Tomorrow Noman International Relations 15 Wednesday, November 04, 2009 09:42 AM
Rise and Fall Of Muslim Scientists Eve General Knowledge, Quizzes, IQ Tests 0 Tuesday, June 19, 2007 12:17 PM
20 Greatest Inventions by Muslim Scientists Mr Ghayas Humorous, Inspirational and General Stuff 0 Monday, June 26, 2006 06:22 AM


CSS Forum on Facebook Follow CSS Forum on Twitter

Disclaimer: All messages made available as part of this discussion group (including any bulletin boards and chat rooms) and any opinions, advice, statements or other information contained in any messages posted or transmitted by any third party are the responsibility of the author of that message and not of CSSForum.com.pk (unless CSSForum.com.pk is specifically identified as the author of the message). The fact that a particular message is posted on or transmitted using this web site does not mean that CSSForum has endorsed that message in any way or verified the accuracy, completeness or usefulness of any message. We encourage visitors to the forum to report any objectionable message in site feedback. This forum is not monitored 24/7.

Sponsors: ArgusVision   vBulletin, Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.